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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL NOTE NO. 1832

SMALL BENDING AND STRETCHING OF SANDWICH-TYPE SHELLS

By Eric Reissner
SUMMARY

A theory has been developed for small bending and stretching of
sandwich—type shells. This theory is an extension of the known theory
of homogeneous thin elastic shells., It was found that two effects are
importent in the present problem, which have not been considered
previously in the theory of curved shells: (1) The effect of transverse
shear deformation and (2) the effect of transverse normal stress
deformation. The first of these two effects has been known to be of
importance in the theory of plates and beams. The second effect was
found to occur in & manner which is typical for shells and has no
counterpart in flat—plate theory.

The general results of this report have been applied to the
solution of problems concerning flat plates, circular rings, circular
cylindrical shells, and spherical shells. In each case numerical
examples have been given, illustrating the magnitude of the effects
of transverse ghear and normal stress deformation,

- The results of this investigation indicate the necessity of
taking account of transverse shear and normal stress in sandwich~type
shells, as soon as there is an order—of-magnitude difference between
the elastic constants of the core layer and of the face layers of the
composite shell. Tt was found that the changes due to transverse
shear and normal stress deformation in the core may be so large as to
be no mere corrections to the results of the theory without transverse
core flexibility.

The actual magnitude of the changes is greatly dependent on the
geometry and loading condition of the structure under consideration
so that no general rules may be given which indicate for which elastic
modulus ratio the changes begin to be significant.

Solutions of problems in the present theory may in general be
obtained by mathematical methods which are similar to those employed
in the theory of plates and shells without the effect of transverse
shear and normal stress deformation included. The present work does
not include consideration of buckling and finite deflection effects.
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INTRODUCTION

In this report an sxtension of the classical theory of small
bending and stretching of thin elastic shells is considered. Instead
of a homogeneous shell, investigation is made of a shell constructed
in three layers: A core layer of thickness h with elastic
constants E;, G,, and v, éand two face layers of thickness t with

elastic constants Ep, Gp, and Vy. In the developments certain

restrictive assumptions are made which somewhat limit the general
applicability of the results. In so doing formlas are obtained which
are as compact as possible while still describing the egsential
characteristics of the sandwich-type shell.

The thickness ratio t/h is agsumed small compared with unity;
at the seme time the ratio Ept/Ech 1s assumed large compared with
unity. This latter assumption means that the face material 1s so
mich stiffer than the core material that the contribution of the core
layer to stress couples and tangential stress resultants of the composite
ghell is negligible. It is kmown that for flat plates these assumptions
necessitate the taking into account of the effect of transverse shear
deformation. (See, for instance, reference 1.) The same would be
expected to be true for curved shells, and the present repcrt, therefore,
gives a system of equations in which this effect is incorporated. ‘

A further effect which, it appears, has not been considered
previously in the analyeis of small deflections of sandwich structures
ig the effect of transverse normal stress deformation. In the present
report it is shown that this effect arises in a manner which 1is typical
for shells and has no counterpart in plate theory. It may be likened,
roughly, to what happens in the bending of curved tubes.

The process by which the general results of this report are
obtained is as follows: First, each of the face layers of thickness t
15 assumed to behave like a thin shell without bending stiffness. The
loads applied to these face shells, henceforth called face membranes,
ere- of two kinds: (1) External loads and (2) loads caused by the stresses
in the core layer. Next, the core layer of thickness h 1s assumed
to behave like a three—dimensional elastic continuum in which those
gtreases which are parallel to the faces are negligible compared with
the transverse shear and normal stresses. On the basis of these two
sgsumptions three steps are carried out. First, the equilibrium
equations of the core layer and of the face layers are obtained. Then
an appropriate expression for the straln energy of the composite
gtructure is derived. Finally, Castigliano's theorem of minimum
complementary energy is used to obtain the relations which connect
gtress resultants and couples of the composite shell with the quantities
which describe the state of deformation of the composite shell,
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The system of equations which is obtained in the foregoing manner is

gpecialized for the following cases:

(1) Flat plate-

(2) Circular ring

(3) Circular cylindrical shell

(4) Spherical shell with axisymmetrical deformation

In each case a number of problems are solved expllicitly and the

apprecisble effect of transverse shear and/or normal stress deformation

18 1llustrated numerically.

This work was conducted at the Massachusetts Institute of
Technology under the sponsorshlp and with the financial agsistance
of the National Advisory Committee for Aeronsutics.

h

t

€15 &

£

%1 %
Rys Rp
Nnma
Nnm'L
Prus Pnl
q.u L} q_Z

SYMBOLS

core—layer thickness
face—layer thickness

curvilinear coordinates on middle surface of
composite shell

distance coordinste measured along normal to
middle surface of shell -

coefficients of linear element on middle surface
of shell

principal radii of curvature of middle surface of
shell

direct stress resultants in upper face membrane;
n=1,2;m=1,2

direct stress resultants in lower face membrane

tangential components of external load intensity
on upper and lower membranes

normal components of external load intensity on
upper and lower membranes
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components of transverse shear stress in core layer

component of transverse normal stress in core layer

values of transverse shear stresses for ¢ = i.h/z;
n=12 '

values of transverse normal_stresses for ¢ =% h/2

values of transverse shear stresses at middle surface
of shsll

trangverse shesr stress reéultante

direct stress resultants parallel to middle surface
for composite shell; n = 1,2; m = 1,2

stress couples for composite shell; n =1,2; m = 1,2

tangential components of external load intensity for
composite shelly n = 1,2

normal component of external load intensity for
composite shell

external load intensity term defined by equation (22)
strain energy

elastic moduli of isotropic face—layer material;
V=‘Vf

elastic modulil in transverse direction of core—layer
material

effective'tangential components of displacement of
elements of composite shell

effective normal coﬁpdnent of displacement of elements
of composite shell

effective components of change of slope of normal
to middle surface of composite shell

component of strain (ety = °§m/Ec)

<
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CD* = (1/2)t(h + t)2E,

C = C*/(1 — y2)

D bending stiffness factor CD = D*/(1 —-VE))

X, ¥ Cartesian coordinates in plane of flat plate

r, 6 | polar coordinates in plane of flat plate

a redius of circular ring, cylindricel shell, and
spherical shell

x, 0 surface coordinates on cylindrical shell

M Ao, 112 paremeters defined by equation (63)

p=n/1

1 ‘ half wave length of sinusoidal load distribution

m, my quantities defined by equation (197)

k complex quantity defined by equation (éOO)

g, surface coordinates on spherical shell

® quantity defined by equation (74)

K. paremeter defined by equation (190)

I — GENERAL JHEORY

Statics of Sandwich-Type Shell

In order to derive a complete system of equations for the shell
composed of face layers and core layers it is necessary first to
consider separately the statics of the face layers and that of the
core layer of the shell. Combination of the results obtained for
these two components of the composite structure must and will lead
to those differential equations of equilibrium which hold for elements
of a shell, whether this shell is of homogeneous or nonhomogeneous
construction. In addition, however, relations are obtained which
are characteristic of the sandwich~type shell.

Coordinate system on shell.— A curvilinear coordinate system
(€1, &p, §) 18 introduced as follows: Let ¢ and t» be coordinates
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on the middle surface of the composite shell and let € be the distance

of a point of the shell from its middle surface, measured along the ,
normel to the middle surface. In order that this system of coordinates v
be an orthogonal system, choose the £7, €5 curves as lines of curvature

on the middle surface (in the case of shells of revolution the lines of

curveture are identical with the meridians and parallels on the middle

surface) .,

The linear element in the foregolng system of coordinates is of
the form

2 _ 2 EN 162, 42 EV e 2, 42
ds~ = ay <} + §I> d€1= + ag <} + ﬁE) ats= + af (1)

where aj and ap are the coefficlents of the linear element on the

middle surface and R; and Rpo are the principal radil of curvature

of the middle surface (see fig. 1). Formulas for the calculation of

the quantities a &and R, are contained in texts on differential -

geometry. They are collected, together with other results, in
reference 2, which deals with the theory of homogeneous thin shslls. =

Statics of face layers.— The face layers are treated as thin shells
of thickness t and it is assumed that the bending stiffness of these

thin shells about their own middle surface may be neglected.l Because of
this neglect from now on they will be designated as face membranes.

The middle surfaces of the face membranes evidently are given with
reference to the three—dimensional system of curvilinear coordinates

py €= %(h +t) and £ =-— %(h + t). From equation (1) it follows

that the linesr element on the middle surfaces of the face membranes
is given by

| 2 | |
as® = a,12<1 + E‘éﬂ'ﬁ) a&1% + a.22<l + %ﬁf) aes2 + at2 (2)

The components of external load intensity on the upper and lower
membranes are designated by P12 Poyo and 9, and by P15 Poys and dy5 .
respectively (fig. 2). The core—layer stresses which act on the upper
and lower membranes are given as Tyfy, Toly, and of, and by Ti€;, Tob i,

1This, of course, means that no lbcal‘buckling phenomens are
considered in the present work.
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and Ofqs respectively. Finally, the direct stress resultants in the

upper and lower face membranes are designated by Nyjy,, Ny, Nojy,
and Npp, and by Nyy3, Nypy, Npyg, and Nppq, respectively (fig. 2).

There are then three equations of force equilibrium for the
elements of each of the two membranes., Writing

_ h+t
Ony = “n(l + 2Rn>

: _ (3)
= ~ a4t b
onl @n( R, >
the equations fbr the upper—face membrane are the followingg:
AaoylN; SV da]: daoy
————l—g‘gll 4 -———-—-—é‘g:lu + Nyoy ag = Moou §g— * “u2u (Pl - T1tu) = 0 (¥)
dapy Moy | SayyNooy oy a1y
Rr=A? WAE Y -4 SR - M=t =L ) - N -T =0
agl + agz + Noju <7 agl 11u ag + A1y ‘12u(P2u 2§u) (5)
N N
o %oy - ll; — — 22; i oty| =0 (6)
1l + ) 2( + )
1( 2R 2R,
The corresponding equations for the lower—face membrane are
0apylNi1y  SayqlNoyg Sany Sany
——ggll-ll— Ty E S 9907 (P17 +T1t7) = 0 (7)

2These are obtained from the corresponding equations of reference 2
with ap changed to ayp, and with stress couples and transverse shear
stress resultants omitted. To make up for this omission, the loads on
the two menmbranes are assumed to act at their middle surfaces; this means
terms of the order t/R are neglected (but not terms of order h/R).
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N113 ‘ Nooz |
- - a =0
] s WA i W L (©)
1\~ 7 T2Ry 2 SRo

As bending moments and transverse shears are assumed not to be
acting in the individual membranes the moment equilibrium equations
become the symmetry relations

Nyoy = Noyy
(10)

Nipy = Noy3

Before analyzing the state of stress in the core layer it is
convenient to see what relations follow from equations (4) to (9) for
the composite shell, - ,

Statics of composite shell.— It may be seen that, in view of the
fact that all face—parallel stresses in the core layer are neglected,
the following expressions for the face—parallel stress resultants and
couples of the composite shell are obtained: ‘

Nyy = (1 + Ll‘g‘%f)Nuu + < - h2§2£>N111 (11)
Nyp = (1 + h2§2t>1v12u + ( - %%)ngz (12)
Npp = (1 + h#)leu + ‘<1 — hgﬁlt)wlgz (13)
Nop = (1 * h2§1t>1‘722u + < - h2§1t>N222 | (1)
My = B 5 & Kl + h2§2t>1\rllu —~ < - I—I—Qitf Nllz: (15)
s - Byt (1 + h,_,c,%f)Nm - (1 - h‘eﬁf)“lﬂj (16)
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ey = 2581 + BB, — (2 - %)Nlezj )
ez = Bt 0+ ems - (1 - Bt reen )

In the same way the following expressions are obtained for components
of external force and moment intensity:

by = (? L b +2ﬁ><? h + ﬁ)Pnu (1 _h +2#>< _h Lony (19)

_ h t h+ ¢ _h t _h4+ t
q = (l + —i—aRE >(l + _L—QRl)qu + (1 4t L 58y q, (20)

_h t ' h+t ‘h + - _h t - h t
o = B A - (- o - | (0

Further, a load term of the following form will be encountered:

=3[l B+ b, - (1 - 2etgt) e - %—'ﬁl—t)qz] (22)

which bears a relation to equation (20) similar to that which equation (21)
bears to equation (19)., This last term would represent, for a homogeneous
shell, the average transverse normal stress at any station of the shell,
assuming that the loads gq,; and q; alone are responsible for this stress.
For a homogeneous isotropic shsll this term is of no importance. For a
sandwich—type shell, as will be seen, it may sometimes be of importance.

In order to obtain force and moment equilibrium equations for the
composite shell the face-membrane equilibrium equations (%) to (9) are
combined suitably. Adding equations (4) and (7), and (5) and (8),
respectively, the two equilibrium equations for the force components
parallel to the mlddle surface of the shell are obtained. In order to
reduce them to known form (see reference 2) the following relations are
used between the core-layer—surface shear stresses Tatu and Taty

and the transverse shear stress resultants Ql and QQ.
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(23)

«Q

hoat noat\. (1 _hat\f _h+t\r . __
<1 + ——t—gRl )(1 + -:t—ERE Tty —L—ERl 1 -—“LERE 1t

571

Lt [(1 r B )b+ B raa + (1 - B2 - 2t 1] - o (24)

Equations (23) and (24) will subsequently be shown to be in agreement
with the usual definition for the transverse shear stress resultants by
congideration of the stress distribution of the core layer.

With equations (23) and (24), there are obtained by combination of
equations (4) and (7), and (5) and (8) — carrying out addition as well
as subtraction — the following four equations: ‘

a—;-’gl:—ll + a—g-gﬁl + Nyp %‘;—]2: - Npp %gf + ala2<% + pl> =0 (25)* ]
acarzilll + agiézbl + M;z’ -:-z—; - Mo %?1— +.or.1a.2(ml - Q) =0 (27)*

Two further equations are obtained by adding and subtracting,
respectively, equations (6) and (9). Adding equations (6) and (9) and
teking account of equations (11), (1), and (20), there follows:

N N h+t hot+ &
a.laeli(-ﬁil + R—§2>—- q + (l + 2Ry )(1 + ok, )cgu

_ (1 - thgt (1 - 11—241%]?1)09] =0 .(29) é
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In order that thils reduces to the correct equation of transverse force
equilibrium as given in reference 2,

e |1+ 2a0) (2 + Bt - (1 = Bagt) e - Bt

O e
St | ot

(30)

Equation (30), Just as equations (23) and (24), can again be verified
independently by consideration of the state of stress in the core layer.
On the basis of equation (30), equation (29) is written in the form .

dagQy  OayQp 11 Nop _ *
St + 3¢, aq s R + R, + @q00q = O (31)

The last equation, uss of which 1is required for the sandwich—type
shell and which has not previously been given, is obtained by
subtracting equation (9) from equation (6). Taking account of
equations (15), (18), and (22), there results

conop My | Moo bt b+t
s t<Rl + o = 20058 + aq0p (1 + o ><l + oRy >d§u

+ ( - %%2:2)(1 - h‘eﬁf‘)"h] =0 | | (32)

Provisionally, there is written

Ry RO LD SR




12 NACA TN No. 1832

and it will subsequently be shown that Otm represents the value
of of at the middle surface of the shell. Combining equations (33)

and (32) yields

Otm + E_%_¥<§; ggé) 8 =0 (3&)*

Equation (34%) has no relation to the sixth equation of equilibrium
for an elemsnt of the shell which expresses the condition of moment
equilibrium about the normal to the middle surface. That equation which,
ag is known, is an identlty when resultants and couples are expressed
in terms of stresses does not occur in the present derivations, or rather
it is contained in equations (12), (13), (16), and (17), which give
explicitly the slight differences between -N12 and Nél, and Mo

and My,.

Stress distribntion in core 1ayer.— In order to verify independently
equations (23), (2k), and (30), as well as for the subsequent derivation
of appropriate strese—straln relations, it is necessary to determine the
digtribution of stress in the core layer.

Assuming that the components of streas 0y, Op, and Ty, in the

core which would contribute to stress resultants and couples of the
compogite shell are of negliglble importance,3 thege components of
stress may be set equal to zero and only the components of transverse
shear stress and transverse normal stress T31{, Tof, and ot may be
retained., The differential equations of equilibrium for these three
remaining components of stress in the system of curvilinear coordinates-
defined by equation (1) are obtained, from the general form of these
differential equations in reference 3, in the following form:

%E_(l + E> (1 + ?)Tla =0 (35)
a. B g o g -1
-a—g— -(l + 'ﬁ;) -<l + -_R—l)Teg =0 (36)

3Tt is for this purpose that the order—of-magnitude relation
hEc/tEf-<< 1 ies assumed.

L ¢
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L 3
' i) D] ol
+ S%E-Ezl(l f%)’rag] =0 | (37)

The values of the three stress components at the middle
surface ({ = 0) are designated by the subscript m. Integration of
equations (35) to (37) then gives A

Tt = Un - (38)

(1 + C/Rl)e(l + t/Rp)

Top = T2l (39)
2t
(14 t/R) (2 + t/m))

L EVo, = oty — S| 3 (mitn\ , 3 fwaTotn\
¥ Ry é.+-R2>a§ *tn a1“2[;§1 + §/R1> * a1 4 E/Pg) (ko)

N

The transverse shear stress resultants Q and Qo are obtained
from equations (38) and (39) in the form%

(h+t) /2
% - (L + 5 )ab = = Rrtpf—L 1
Ry 1+822%8 ;_hat
—(h+t) /2 2R 2R,
(h + t)7 _ _
1 - h+t
. 2Ry
< hThe integration mist be extended over the thickness of the core
layer and also over half the thickness of the face layers, in accordance

with the prior assumption that the stresses Tnbus ™1, o9&y,
and of¢; may be taken to act at the middle surfaces of the respective
face membranes.
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Now, as intended, the proof is carried out of equations (23), (24),
and (30), which were used to obtain the differential equations for the v

composite shell.

To verify equation (23), from equations (38) and (39) for the
Jeft-hand side of equation (23), the following equation is obtained:

Tabm _ _™nbm . R+ % Tnlm
ottt 3Bt Ry h o+ t\°
2R, 2Ry, | 1_(.§n_

and this, in conjunction with equation (41), verifies equation (23).

To verify equation (24) in the same manner, from equations (38)
and (39) for the left side of equation (24), the following equation

is obtained:

<)

h+t/ "nbm - Thi _ (h + ) Thém

+ =
2 h + © h o+t 2
1+ 75— 1= l_(h+t)
. 2:RI].

and this, in conjunction with equation (41), verifies equation (24).

To verify equation (30), equation (40) is used to write for the
Teft side of equation (30)

d /“271§m '+ 3 [MTetm \ | 3 [%T1m ), 3 [“Totn

Oti{; ,h+t) obgly Rt dq{; _h+t] oy b+t
- 2Ry 2R, 2Ry 2Ry

_d [ 2agTatm \, .3 [ 29Toln
oky 1 — ho+ £)2 o2 1 - h o+ t\° ’
2Ry Ro ’

and this, in conjunction with equation (41), verifies equation (30).
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The section on the stress distribution in the core layer is
concluded by listing the form which equations (38) to (40) for the
stresses in the core layers assume for "thin" shells, that is, for
shells for which h/R << 1, From equations (38) and (39), in
conjunction with equation (41), it follows that

it =g + t
(ho)*

N

28 =TT

From equation (40), in conjunction with equation (41), it follows that

Q | SQ '
@008 = 0q0p0ty — - 5 t<?g§l + a§:2> (43a)

It 1s necessary to note for some of the following considerations
- that, in view of equation (31), instead of equation (43a) there may
be written :

e N1, Nop
% = %m h + t\Ry + Ro q> \ (43b)*

It is seen that in thie approximation the transverse shear stresses are
uniform across the. thickness of the core layer, while the transverse
normal stress is composed of two terms, one uniform across the thickness
and the other varying linearly across the thickness.

No further calculations are needed with reference to the state
of stress in the composite shell. The next step 1s to complete the
system of differential equations for stress resultants and couples by
deriving an appropriate system of stress—etrain relations,

Strain Energy of Sandwich-Type Shell

In calculating the strain energy of face membranes and core layer
it is assumed that both are isotropic and elastic, with elastic

constants Er, vy =v, Gp = Er/2(1 + V) and Ecy Ve, Go = Eg/2(1 + V).
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Poisson's ratio for the face membranes is written without a subscript,
because, in view of the assumed gtress distribution, there is no explicit
occurrence of Poisson's ratio v, for the core layer.

The strain energy for the composite shell is the sum of the strain
energies for the face membranes and for the core layer

= + T | (hi&)

)

For the purpose of obfaining gtress—strain relations, both np and mc
are expressed in terms of gtresses rather than in terms of strains.

Strain energy of face layers.— Considering that the element of
area on the middle surfaces of the membranes is of the

form aqap(l & h251t><} + h§§5§ dtq ¢, and that the stresses

in the membranes are the stress resultants divided by the menbrane
thickness t, there 1is, from well—known principles, the following

relation:

|t 2 2 |
T = 5(”‘;5;[“1111 + Nppy® = BVNyllopy + 2(1 + V)N12u2]

n4t h o+t
X (1 + oy >(l + ohy )cx,lag ag, dg,
1l 2 2 >
+ 'e‘fftEf[Nllz + Nppy® = 2VINq3Wppy + 2(1 + V)I‘Tlmz]

h + +
X <l — 2th>(l - h2R2t>(Xald'2 dgl dgg : (h‘5)

Equation (45) is transformed into an expression containing stress
resultants end couples of the composite shell by means of equations (11)

to (18) which lead to the relations
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~

h + ‘ 2
2(1 + >Nllu Nll + '+t Mll

2Rp
| e (46)

——2 W
2Ro Nil b + t'Mll

h + %
2(} _.__i;_>milz
" with corresponding formilas for Ny, and N22.5

Tn this transformation the cases are limited to those for
which h/R << 1. Then, with the two constants C* and D* defined by

C* = 2tEp
(%7)

D*

L t(n + t)%8,

the following expression for np 18 obtalned:

* %‘;[Mlle + Mp® — 2vMy M + 2(1 + v)Mlgﬂ} ajap by dE,  (48)*

It may be remarked that equation (48) could have been given directly, by
analogy with known results for the isotropic homogeneous shell,

Strain energy of core layer.— With the stresses oy, 0y, and T
assumed to vanish, there results for the strain energy of the core layer

JNote that equations (46) and corresponding equations can be used
to calculate the stresses in the two different face. membranes, once
gtress resultants and couples in the composite shell are known.
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h+t
, - 2 2 2 : :
o =4 G‘Jg s Tot ><1 . %)(1 . 1%) daja, 2ty aty  (49)

bt VC
2

Again the terms §/R compared with unity are heglected end, consistent
with this neglect, the values of the stresses T,¢r and of are taken

from equations (42) and (L3).

The value of of may be chosen from either equation (43a) or
equation (43b). The form of the results depends somewhat on which of
the two equations is chosen, in the sense that the meaning of the
deformation quantities which are to be determined depends on which
of the two equations is taken, This question is decided in the
following manner: As all resultants and couples enter the expression
for the strain energy only as themselves and not in differentiated
form, except when equation (43a) is used, the selection of equation (43b)
- for ot 4s proposed, thereby excluding derivatives of stress resultants

and couples from the expression for the strain energy =.

Tntroducing then equation (43b) into equation (L49) yields

2
X dgaiQQ aty d§2 (50)

The integration with respect to § is carried out and
equation (50) becomes

Q2 + Q° N. 2 |
B =% 1 + L +Lttl:g§m2+_]s._];.l+§§—2-—q):| aa, 48 dby (51)%

It was to be expected that the terms containing the modulus of
rigidity G, would occur in the foregoing form. The contribution of
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the present report up to this point, besides giving the new equation (34)
for oty, is thought to be the determination of the form in which the

effect of transverse normal stress deformability manifests itself in
the strain energy of the sandwich shell,

Streas-Strain Relations for Composite Shell

In what follows a system of stress—strain relations for the com—
posite shell is obtained by the use of Castigliano's theorem of minimum
complementary energy. The menner in which the theorem is used here
appears to have been employed first by E, Trefftz (reference 4) for the
purpose of avoiding geometrical considerations in the derivation of the
stress—strain relations for thin homogeneous shells with small defor—
mations, without consideration of the effects of transverse shear and
normal stress deformation.

Agsumlng for the present purpose that all boundary conditions for
the shell under consideration are stress conditlons, the theorem
congists in the statement that among all statically correct states of
stress the actually occurring state of stress makes the strain energy
of the system a minimum, In the application of the theorem the fact
i1s taken into account that statically correct states of stress only
are to be compared, by means of the lLagrangian multiplier method.
Before minimizing x an integral is added to it which contains the
six equilibrium equations (25) to (28), (31), and (34), each of the
8ix equations multiplied by a lagrangian multiplier. It can then
be shown, by using Castigliano's theorem with prescribed boundary
displacements Instead of with prescribed boundary stresses, that
each of the six multipliers has the meaning of one of the displacement
quantities which occur in the shell prdblem.6

With the foregoing understanding of the meaning of the multipliers,
the multiplier of equation (25) is designated by wuj; that of

equation (26), by up; that of equation (27), by B3; that of

equation (28), by Bp; that of equation (31), by w; and finally that
of equation (34), by k. It is known that wuj, u,, and w represent
the effective components of displacement in the £;, &5, and § direc—

tions, respectively. Further, it is known that B; and Bo represent
the angles through which the normal to the middle surface of the shell
turns toward the &3 and £p curves, respectively. There is no

6For the special case of the flat plate this has been carried out
explicitly in reference 1. TFor the case of the homogeneous shell,
without effect of transverse shear and normal stress deformation, the
proof has been given in reference 4. Ths proof for the more general
cagse which is here considered is not included as it does not offer any
clearer insight into the problem and tends to lengthen the analytical
discussion.
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immediate simplé geometrical interpretation for k and, while such
interpretation in terms of an average transverse normal strain might
be deduced herein, k is considered as an auxiliary variable presently

to be eliminated.

Combining now equations (44), (48), (51), and (25) to (28), (31),
and (34) in the mammer indicated, the following variational equation
results:

1 1
1 E;[1\1112 + Npp2 — 2V Npp + 2(1 + V)I\T122]

%a‘z[Mllg + Meeg. — 2vM My + 2(1 + V)Mlee]

+

12 B1 Ro
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2, o2
Q-+ N 2
1 Q2+h+tEgm2+1 ll+22—>Ja1a2d§1d§2

+
(h + )G, Eg

+

dapN11 | SwalNpy da1l _ . Oap
S) ul[ agl + 852 + N12 N22

+

+

oqop(m1 — Q)i+ P25 0 * e,

+

+

+

M
k[“ém *n }r t(Ril + ;422> - B:I d€y df2 = 0

. _
“1“2ﬁ5+1’2>]+‘31'5§1—+—a§”412'az;—“225'§;

G Soplyp  Saylap Oagp Say
a1a2<%l + Pl}l + Up 551 + age + Noq 8&1 N7 SEE

ae2(me = )| + V|5t S, “MQT R T ‘1)]

.8

X
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The variations in equation (52) are carried out and integration is
done by parts to eliminate derivatives of variations in the double
integral. The line integrals along the boundary which occur due to
this integration by parts vanish, because it has been assumed that all
stresses are prescribed at the boundary and therefore their variations
vanish at the boundary.

The resultant veriational equation is

Nip —VNpp 3 du; u h+t (MN11 , Nop
SNll[“L—a?—-ﬁsz;fmﬁa—gi"%+ R R -

L BNy N2 = VN1 _ 1 dup  uy dap _ w
2|7 ¥ @ 3f, ajop k7  Rp

bast (Mg, oo 21 + V)Mp _ 1 ow
* 12ECR2<R1 YRy, T Y| T Ty 3¢,

up Suy 3 Oy  up Bmp My = VMo
' & 35, T 81 SE, T & 5y |t O

_19 _ B Sy g K
9 of; %1% 3k, (b + t)Rp U2
Mpp — VM3 1 OB2 _ B1 Oap
* SMQQ[ ¥ % 3k, T a1ep JE]
1 + 5M12[?£l_i_ﬁl§i2 - JL.éEl
(h + t)Rp @100 D* %o Ok,
Bl a1 1 B2 ., B2 dap Q uy
T E0s Sk, T % 96y ®% 3E,| T 8Ql['(h ¥ 06, | Ry

— By — b L a1
P1 - &1 B§1]+8Q2[(h+t)Gc+R2 P2 = a5 352:'
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As all nine variations in equation (53) are independent of each other,
1t follows that the contents of all nine brackets in equation (53) mmst
vanish separately. Thus the following nine stress—strain relations are
obtained for the sandwich shell, indicating with an asterisk those
vhich appear in final form,

Nufy , (h+ $)C*\ Topf, (b + t)C*
Cc¥* 19E R, 2 C* \  12E.RqRp

du U, Oa ‘
2% Y 9% oy (h+t
ol 3E ' 0102 3, | RL T 1BEGR) (54)

Neaf; . (b + )C*\ _Maf, _ (h + t)C¥

13,y Ny (h+t)g (55)

+ +
a2 3ty X% dE;  Ro - 1ERp

2(1 + v) _%1 3 /a1 , o2 9 /u2
o 12 =g L P “1) T 3§1<:2> (e
My —VMp 1 31, B2 du_ _x 1 (57)
D¥ al of; % ofp A% (h + t)R
Mp = VM _ 3 B By % 1 (58)
o* ap 3f, © @ap 3y 3% {(h + t)Rp
21+ %), _a1 3 M1}, 92 3 (B2
D M2 =& 3§2<21> T 5§1<92 o)




NACA TN No, 1832

@ 1w Y2
o, 2%, TR
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- (60)*

(61)*

(62)

It may be verified that the meaning of the quantitles wu;, up, W, Bj,
and B, 1is as has been indicated by comparing equations (54) to (61)
with the corresponding equations of reference 2 for the homogeneous

shell with Eg; = G¢ = «,

The system of equations (54) to (62) may be brought into a

8lightly more concise form as follows:

and Mo by

h + t)t B

A =.:L( £

1=3 Rle c

: 1 (h+ t)t Ep

Ap = =

22 R2 E,
h + t)t Ep

o = & (B + H)t Ep

M2 =2 TRF, E, )

Define the quantities A, Ao,

(63)

and eliminate k from equations (57) and (58) by means of equation (62)

and the equilibrium equation (34).
in the foregoing form and write for equations (54) and (55)

us  daj -
ajap JEo

1 ~fv_1 _exfl S
(1 + 3 )vl)Nll (V 3 km)Ngg C (061 551 +

(h + t)C*
12E.R;

Retain equations (56) and (59) to (61)

+ %1)

(6k)*
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1 (v -1 _oxfl Su2  wl_Oop  w
(l + 3 Xg)Ngg <v 3 )»12>N11 c <c12 Sk, + a5 SE; + R2> .
(n + t)C¥
*rm, O (65)*

Equations (57) and (58) become, if D*/(h + t)E; = % t(h + t)Er/Ec,
according to equation (L7),

- _pefl OB1, B2 So3), D* |
@+ 2a)M1 - (v = M2)M2 D*(d‘l Sty ¢ @ a§2f> + ok (66)*

o) *
(L + 2)Mp — (V = Mp)M1y = D*(F]é" 32—2 * a—;% %‘g@l—> + -E-%R—e s (67)*

With these last transformations there is obtained a system of w
equations which is formally equivalent to the corresponding system of
equations for the homogeneous shell. The 5 equilibrium equations (25)
to (28) and (31) and the 8 stress—strain relations (56), (59), (60), (61),
and (64) to (67) are used for the determination of 13 queantities: Five
stress resultants Nyp, Noo, Ny, @, and Qp; three streas couples M4,

b&e, and Myo; and five displacements and chenges of slope uy, ug; v, Bl,
and PBo. The quantity ofy which occurs in the sixth equilibrium

equation (equation (34)) may be determined directly, once the shell
bending and stretching problem has been solved. '

It is seen that the effect of transverse shear deformation enters
equations (60) and (61) only and that, when G, = =, these equations
give the values of the known theory of homogeneous shells without
transverse shear deformation (references 2, 3, and 4).

The effect of transverse normal stress deformation enters equa—
tions (64) to (67) only. It is seen that it is, in part, responsible
for the occurrence of apparent stiffness factors C*/(1 + )
and D*/(1 + A). Thus, according to equation (63), the effect of .
finite E. . is to make the shell more flexible in bending and stretching ' «
than it would be with E. = », This effect, however, is present only
in curved structures and not in plates and straight beams, as the
quantities A have one or both of the radii of curvature in the «
denominator. A further effect of finite E; is occurrence of the
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external load terms q and s in the stress—strain relations. Both
these effects represent, roughly speeking, what happens to the shape
of an element of the composite shell if the length of the core fibers
in transverse direction is changed, without any stretching or
compressing of the face—membrane elements.

Having derived the general system of equations for the small
bending and stretching of sandwich—type shells, it remains to apply
these equations to specific problems which may be of interest and to
determine the quantitative effect of the terms which are characteristic
of the sandwich—type shell, Some of this work is done in part II of
the present report, which follows.

It may be stated once more that for these specific applications
the five equilibrium equations (25) to (28) and (31) and the eight
stress—strain relations (56), (59), (60), (61), and (6L4) to (67) are
used.

IT — APPLICATIONS OF GENERAL THEORY

Flat Plates

The problem of the flat plate is considered first in order to show
that the results of reference 1 are contained in the present results
and in order to solve some problems in the theory of plates which have
not been solved in reference 1. ’

Rectangular plates.— Using notation which is customary in plate
theory there is set

€1 = X Er =7 a; =ap =1 R =Ry = ]

u =u W =v By = Bx Bp = By

N1 =0y  Nyp = Ngy Nop = Ny Q = > (68)
=9 M=% Mpp = Mpy My = My

PL=Px P2=Fy m = Ty mo=my
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The equilibrium equations (25) to (28) and (31) become

ONy  ONyy ]
T 4

ox oy

1
o

+ Dy

> (69)

Lﬁ%’
|
L

Oy | My _ _
Sx + Sy Q,y + My = 0

o

The stress—strain relations (56), (59), (60), (61), and (64)
to (67) become

Ny — VN, = o* QU .
X y ax

Ny — VNy = C* g—; . (71)

2(1 + V)Nyy = c*(% + %)
- J

-

O = (b + t)GC<Bx + -gg-)
. (72) -

Qy = (h + t)Gc<By + %)
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op
Y = D* =EX
" K ox

]

. 38
My —vMy =D a—yl - (73)

2(1 + v)Myy = s gz >

-

As in the small—deflection theory of homogeneous plates, the
equations for stretching (equations (69) and (71)) are inde endent of
the remaining equations for transverse bending. ZEquations and (71)
for the stretching are not affected by the elastic properties of the
core layers.

Equations (70), (72), and (73) have been treated in reference 1 by
means of a stress function V, which, together with the deflection w,
was taken as one of two basic varlables. In what followas an alternate
treatment is given, in which the problem is reduced to three simultaneous
equations for the quantities By, B,, and w. On the basis of these three
similtaneous equations a problem not considered in reference 1 is treated,
namely, the bending of a rectangular plate which is simply supported on
all four edges. .

To reduce equations (70), (72), and (73) to three simmultaneous
equations for By, By, and w, first a quantity ® 1s defined by

; .
o=z, O (7h)
ox oy :

Introducing equation (72) into the first of equations (70), in view of
equation (74), there is obtained .

®+ VW = — q/(h + ‘t)Gc | (75)

Next, Qy, M, and My, are taken from equations (72) and (73) and the

result is substituted in the second of equations (70). This gives, after
glight transformations,

7This same problem has also been solved by L. H. Donnell by a
method which differs from the one employed here. (See reference 5
where the case of the homogeneous plate is considered.)
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%
lD’: 5 VeBy — 2(h + t)GeBy + %;[—f’_—‘”v - 2(h + t)Gcw] +my =0 (76)

In an analogous manner the following further equation is obtained:

T2 BBy — 2(h + t)GcBy + %;[1Di‘°v —o(h + t)GCw:I smp =0 (77)

Tn order to solve equations (75) to (77) two equations are next obtained
involving w and ® only. Differentiating equation (76) with respect
to x and equation (77) with respect to y and adding the two resultant
equations, in view of equation (74), gives

oD om. om.
T o2 0G0 r V) ¢ R e 5t = O
and, making use of equation (75),
. om
oo 1fq 4 2fome Oy
wo-- 33 3 (1®

The following procedure may now be carried out: (&) Solve
equation (78) for w, (b) with this value of ® solve equation (75)
for w, (c) substitute w and w in equations (76) and (77) and solve
for By and By, and (d) elimipate extraneous terms in By and By

by considering equation (74).
Before deriving the solution of a problem along these lines,

the explicit differential equation for w which follows by combining
equations (75) and (78) may be given

VAP = l[q . l(—a—"l + amy)] - ¥ (79)

D 2\ox dy (h + t)G¢

Note that the effect of transverse shear occurs on the right side of
the equation only. In order to compare the magnitude of the q ‘terms
on the right of equation (79), assume that relevant changes of g
occur over distances of order 1 (where 1 may or may not be a
representative diameter of the plate). Then, as order—of-magnitude

relations, there results
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From equation (80), it follows that transverse shear ceases to be a

1 is of order Jﬂ% JEf/GC or of smaller

gecondary effect as soon as

order.

4 - o4
D* Efth2

v2q

)

(h + t)Ge

= o2
12hG

29

(80)

Bending of rectangular plate with simply supported edges.— The edges

of the plate are assumed to be at x
edges moments and deflections are assumed to vanish. Further,

where

q = jg: jg: A 8in Apx sin py

My

Hn

From equetion (78), it follows that

w

where Wy, is a
equation (75),

=;Z —Sm
D ng + un2

0,2 and y = O,b and along these

nn/a

nst /b

8in Myx sin upy + an

harmonic function. Putting equation (83) into

(81)

(82)

(83)
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- 1/p 1 _
v - jg:‘zg: an[;m? + “n? ¥ (h + t)GC} s1n Ayx 810 1py = oy

which is integrated to

‘ D(x 2 2)
= % jg:'jg: (Xm?qinung)e E_+. (hH: :):Z ] sin A x sin py + wy, (8h)

where wy 1is the general solutlon of ‘Vzwh = —th. It is to be expected
and may be shown explicitly that for the plate which is simply supported
all around wyp = @, = O and, as in the Navier solution for the plate

without transverse shear deformation, the particular.integral is the
complete solution of the problem,

Equation (84) may be rewritten in the more explicit form

ZZ qmn{l + 5 a -—E§2)Gc (& ;et)t[mg + n2(8.2/b2):|}

[m + n2 (a2 /be)] 2

X sin %f x sin %f y ' (85)

When G = o, equation (85) reduces to Navier's solution wy. ZEquation (85)
is more readily interpreted by means of the ratio w/wN of deflection

ﬁith and without transverse shear deformation. On the basis of
equation (85), there may be obtained the following equation (86),8

BSetting n2/2(1 — v2) = 5.4 and (Ep/Go)t(h + t)/a® = B,
equation (86) takes on a form which contains as a special case the
result of equation (18) of reference 5.
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W — ———————————————
v VTG L _ (B t)tE Py
N N 2(1 - g, N

' Zz Uym 8in mmx/a ein nxy /b |
. %E Ep (b +2t)t w® + n° (a2 /b2) (86)

(1-+v2)c. a 2 dppn 8in mmx/a sin ngy /b
[m2 + 08 (a2°/‘l)2)]2

For the case of a uniform load intensity q = Constant and for the
center of the plate (x = a/2, y = b/2) equation (86) becomes

2 Z sin mn/2 sin na(e
v _ . .2  Ep (h + t)t mn|m® + n2(a?/p2)]
—_ =1 + - (87)
wy 2 (1 - v2)e, a2 2 X sin mn/2 ein nx/2
mm | + ne(ae/‘bg)]2

The ratio of the series is 1.98, when a/b = 1, and the ratio of the
geries is 1.11 when a/b = 1/2,

For the case of a concentrated load at the center of the plate
the deflection ratio at the point of load application assumes the form

(sin mn/2 sin nx/2)2
ﬁ Ef (h + t)t Z me + ng(az/be) (88)
2

(1 - V2)Gc a? N (sin mp/2 sin mr/e)2
> 2

+ n? (ag/bQ)] 2

Now it is easily shown that the numerator series in equation (88)
does not converge and consequently w/wy = » in this case. A more
detailed consideration shows that in any plate theory which takes
transverse shear deformation into account the deflection under the point
of application of a concentrated load must become infinite in contrast
to what happens when transverse shear deformation is not taken into
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account. This difference, of course, vanishes as soon as the load

intensity becomes finite, and then the theory with transverse shear

deformation teken into account 1s more accurate than the theory which .o®
does not take into account this effect.

For the sake of numericel 1llustration take again thé square _
plate (a/b = 1) with uniform load distribution. According to equation (87),
the deflection at the center is increased because of transverse shear by

the factor

X _ - Ep (b + t)t
- 1+9.7 G " , (87a)

Teke h = 1.0 inch, t = 0.1 inch, a = 10 inches, Er/G. = 200,
end v = 1/3. Then, according to.equation (87&3, w/iNN =1+ 2.3, 80
that in this case the deflection with transverse gshear is more than three
times the deflection when shear deformation in the core is neglected.

Returning now to eguation (84) for w and equation (83) for w
and substituting these two equations in equations (76) and (77) in order
to determine the changes of slope By and By: after slight transfor—

metions there results

By = — 4 Ymm cos Mpx sin ppy
X D ZE: :E: (O + un?)E Hn, L
(89)
=41 Hn
by mmh) ) G e

Equations (89) are remarkable for the reason that they are not affected

by transverse shear deformability. According to equations (73), the

game is then true of the bending and twisting couples My, My, and Myy.

Tt is not easy to see why, in this statically indeterminate problem, the

magnitude of the internal forces, as well as that of the deflections, does

not depend on the elastic properties of the core. The analysis, however,

ghows that the distributions of Mg, My, and Nky,'and'therewith .

of Qy and Qy, remain the same as those obtained under the assumption
that Gg = o. In this connection the following remark may be made,
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Evidently the following three boundary conditions, w = My = By = 0
along the edges x = O,a, have been satisfied. In order that the last
of these three conditlions be satisfled there are necessarily nonvanishing
edge values of the twisting couples Ngy. The same is true in the theory
without transverse shear deformation, where, however, no alternative
possibility exists, as in that theory only the boundary condi-—
tions w = My = O are relevant., For the present system of equations
three boundary conditions must be formulated for every plate edge. Thus,
it is possible although mathematically complicated to solve the problem
of the rectangular eimply supported plate with the edge comdition By =0
replaced by the condition MKY = 0. In that case, which will not be
pursued here, there evidently will be a distribution of internal stresses
which is modified by the effect of transverse shear deformation.

. Cylindrical bending of plates.— As a further relatively simple
example of application of equations (70), (72), and (73) problems are
congidered for which

o )foy =0 )

) Px =al Yfax = ()

Yy = @ =my =y =0 i )
My = VMg |

and where consequently the problem reduces to the following system of
equations:d

' +q=0
Mp! — Qg +my =0

- | (91)
G = (b + t)Gg(By + w')

(1 — v2)Mg = D*p!

o

9the that in order to obtain the problem of the sandwich beam from
equations (90) and (91) the only changes which are necessary amount to
setting v = 0 in equations (91),
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To set into evidence the effect of finite values of G, in
equation (91), the following system of equations is deduced from
equation (91):

Dq"

(V)
o (h + t)G¢

= q + my' —

Dq

Mx=__let — ——
(n + t)Gc

Dq?

= —Dwt't? — —L
% (b + 5)6a

nx

Qx

—_ W ——
(h + t)G,

Bx

Solutions to the following problems are listed:

_ (1) Simply supported plate of span 1 carrying a
load g = qg cos xx/l. Boundary conditions: w(£1/2) = M(£1/2) = O.

W = gg[l L2 Er (b + t)t]cos /1
D 2 (1-ve, | (a/0)"

(92)
(93)
(ok)

(95)

(96)10

As the problem is statically determinate as far as moment and force are

concerned there is no modification of My and Qy due to the finite

value of Gg.

loThe factor in brackets may again be written in the form 1 +f5.hB,

with B = (Ef/GC)/[kh + t)t/lé], using the notation suggested in

reference 5.




NACA TN No. 1832 | ‘ | 35

(2) Simply supported plate of sman 1 carrying a uniform
load q = q,.

4 L . _
=%t J1 i/ x\*_q]_1 8D x\2
D16 |2k [(1/2 l] hl} * (h + t)GcZQJ [(z /2> 1] (97)

‘From this for the center deflection,

X
w(0) = —2_ a0t . 24 Ep (h + t)t (98)
38 D 5 (1-?a °

It is seen that the correction factor for the center deflection is almost
the same as that for the cosine load curve (eguation (96)), the only
difference being a change of the factor =2/2 = 4.93 into 24 /5 = 4,80,
that is, a reduction of the shear correction factor by at most 3 percent
is present,ll

(3) Built—in plate of span 1 carrying & uniform load ¢ = dg-

The boundary conditions are: w(+1/2) = Be(£1/2) = 0 (and
not wt'(x1/2) = 0).

ggiD kz/E) —1] - f [l " n+ t)GCZQ] [(-7—> ] ©9)

From this there follows for the center deflection,

384D (1-+)ae, 12

4 ' ,
w(0) = —l-[ + 2k Er (n + t)t] (100)

Comparison of equations (100) and (98) shows that for the built—in
plate the effect of transverse shear deformation is very much more

llynste that according to equation (87a) the shear correction factor
for the square plate of width a = 1 is more than twice as large as the
shear correction factor for the plate strip of width 1.
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pronounced than it is for the simply supported plate, a factor Eh/5

in the latter case being replaced by a factor 24 in the former case.l2 _

As a further result in this problem of the built—in plate, by putting *
equation (99) into equation (93), it is found that the moment

function My does not contain any terms depending on the effect of

transverse shear deformation., This again is somewhat surprising as

in this case it is not possible fto determine the moment function by

statics alone.l3 '

Circular plates; rotational symmetry.— As no examples of solutions
of circular sandwich-plate problems have as yet been published and as
it is of some interest to determine in which way the shear correction
factors change in going from a problem for the plate strip to the
corresponding problem for the circular plate, the equations for
axisymmetrical transverse bending of circular plates are briefly
discussed. '

Polar coordinates r,6 are introduced and notation which is
customary in plate theory is used. As a consequence of equa—
tions (70), (72), and (73), the following system of equations is
obtained:

dggr +rqg =20 )
4 (101)

drM.

== Mg —rQ. +rm, =0

Q. = (h + t)GC(BI. + dw/dr) (102)

12, somewhat similar percentage increase must take place in going .
from equation (86) for the rectangular plate with all four edges simply
supported to a formula (which has not yet been derived) for the rectan—
gular plate with all four edges built in, ’
13p5 & problem where the moment distribution is in fact dependent
on the effect of transverse shear there may be mentioned the problem of -
the cylindrically bent plate with both ends built in, which carries a
load gy = q1x 1instead of the load qp = qgp. This problem also may be

golved by means of equations (92) to (95). ] <




NACA TN No. 1832 37

M. — WM = D* dBy/dr
(103)
Mp — WMy = D¥B./r
According to equation (79), the equation for the deflection w
will be
drmy Vg
VaPw = i1 - ol
AR o e Th (104)
where V° = (l/i)d[r a( )/dr]/hr. Having found w by means of
equation (104), B, may be determined from
B, =— I S = 1 [y ar 10

end therewith M. and My are obtained from equations (103).

In the present problem it seems to be somewhat more convenient to
proceed as follows: Combine equations (101) and (103) to obtain as
equation for the change of slope Bp,

Pl 0 5] -1 (106

r d4dr

Having Br, M. -and My are found from equation (103) and Q., from the
second of equations (101),

wonliEota) |
> (107)
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d_(1 dﬁﬁr) + 1y (208)

&p-

Finally, with this value of Qn, w is found by integrating equation (102),

S f B, ar D (1 drBr) fmr (1095

TS A (h + t)Ge

Deflection of circular plate with built—in edge.— The bending is

now considered of a plate with transverse load q = q_n(r/za,)n and
with mp = 0. First, from equation (106),

-1
DB, = c1 = + c2<§) + o3 £ loge L + (110)

(n + h)(n + 2)2\8‘)

Attention is restricted to complete plates with no concentrated
load at the center, and consequently it is necessary to get Cy = c3 =0

in equation (110), This gives

n+3

3 .
dp? (& (Z) (1108)

(n+8)(n+2

DBy = c1 § +

Putting equation (110a) into equation (109), there.results for the
transverse deflection w ’ ' '

D¥ -~ s .I_')e + qna3 /r)"'“‘llL + ch}
a 2\a/ "L, 4 (a4 2)2® |

qna3

D  |oc n+2
T 22(n + t)Gc[ECl (n + 2)2( ) ] (111)
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Teking the case of a plate of radius a with built—in edge, that
is, with the boundary conditions

e(a) =w(a) =0 C aw)

there results

3 [ n+3 ]
= 9n® r -r
mf'm+uxn+m2@) e (133)

and

L n+h p
Dy = — 308 (r/a) -1 _ 1 (r/a)s -1
(n+2)2| (a+4)2 2 0+

-2l - B

From equation (11k) there follows for the deflection at the center of
the plate

D(0) = e [} LB B (na )bl

o(n + 2)(n + 4)2 n+2 (1 _.VE)GC a2

Conglder the following special cases:

(1) Uniform load distribution q, = qq. From equation (115), it

follows for the ratio of deflection with and without transverse shear
deformation that ’

w(0) _q,82f (b + t)t

[w(0)] ) (1-+v2)g, @° (116)
Go=
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Equation (116) may be compared with equation (100) for the deflection
of the infinite plate strip of width 1 with built—in edges.

Setting 1 = 2a, it is seen that, while the transverse shear correction
factor for the strip has a value 6, the corresponding factor for the
circular plate is 8. This is consistent with the earlier comparison
between the simply supported strip end the simply supported square
plate, except that there the change is from 4.8 to 9.7.

(2) Linearly increasing load distribution ¢ = qyr/a. From
equation (115), it follows that

W(O) -1 2> Ep _ (h + t)t ' (117)
[w(o)]Gc=oo 3 (1 - v, 8?

gshowing that the correction effect is only slightly greater than in the
case of the uniform load distribution.

(3) Ioad increasing linearly from edge to center, g = qq + gj(r/a).
Q] = —g0). From equaiion (115), it follows by superposition that

4 5 |
_ q08 +  (h + t)t
DW(O)—————72X2X1|:1+8(1_\)2)GC > ]
ah
__ Y 142 Er (b + t)t
2 X3 X25 3 (l _ve)Gc &2
l+3qoal+ 3000 Ep (b + t)t
Q) =
Dw(0) = 55 T55| * 387 (1 —v2)a, a2 (118)

Comparing the factor 3000/387 = 7.76 which occurs in equation (118)

with the corresponding factors 8 and 8.33 in equations (116) and (117)
it is seen that, in the foregoing three problems at least, there is
1ittle difference between the transverse shear stress correction factors
in the case of three different loading conditions for the circular,
clamped—edge plate. The fact that this agreement should not be expected
to hold generally follows again by considering the case of a point

loaed at the center of the plate, for which the shear correction factor
would again be infinite.
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The examples of this section should be augmented by the solution
for the circular plate of radius a, which carries a load distributed
uniformly over a smaller circle which is concentric with the boundary -
of the plate. .

Circular Rings

Ag the simplest example of a curved ssandwich structure there are
considered in this section stresses and deformations of -circular rings
in their own plane. As was found 'in the genersl developments of
" part I of this report, in a curved sandwich structure there will bde
the effect of both transverse shear and normal stress deformation.l

There are set for the relevant coordinates and varlables

£y = &b ap =1 ]
R -a w =
L = B N1 =N
Q =Q Mp=M & (119)
Py =P mo=n
3 )k =a()/aae =()"/a
M = A= 30+ 6)5/e2] (Bp/Eo)

The equilibrium equations (25) to (28), (31), and (34) reduce to
the following equations:

[
o

N' + Q + ap
(120)

]
o

Q' — N + aq

ll*The effect of transverse shear stress deformation on homogeneous
circular rings has been considered by L. Beskin in reference 6,
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M' —aQ + am = 0
(121)

Oty = 8 — [M/(h + t)a]

The stress—strain relations (56), (59), (60), (61), and (64) to (67)
reduce to the following equations: '

(1 .1 x)m -1 C*[v' AR (—“l;TZ)-‘l] (122)
Q= (n+ 6)Go[p + 20w = v)] (123)
(1 + MM = 2 D*(B' + 8/8c) (124)

The load terms p, q, m, and 8 are given, according to
equations (19) to (22), by

~
_ h+1t _h+ t
p-<l+2a )pu+< 2a )p
- h+t . _h+ t
a4 <l+ 2a )qu * <l 2a >q
> (125)

w
I
N =
—_
/D
+
=
no
o4
. c+
re)
i
|
TN
|
no
o1+
ct
N—
s}
|




NACA TN No. 1832 _ 43’

Ring sector acted upon by end bending moments.— As a first problem
on circular rings, which illustrates the effect of transverse normal .
* stress deformation, there is taken this basic case for which, as is
known, there must be the same stress distribution at all sections
6 = Constant of the ring.

According to equations (120) and (121),

N=Q=0

M=l e (126)

Otm = — My/(h + t)a
J
‘Equations (122) to (124) become

v1 +w=0 -
b s (' = v)/a =0 (127)

(1 + MM =D*p'/a (128)

The significant result of this consideration is contained in equation (128),
which may be written in the alternate form

D* B! , D* w'' 4w
M = = = = (129)
P40 a 1 +4 A 14 .l (h + t)t Ef. _6_2
27 a2 &,

Thus, in this case of pure bending the transverse flexibility of
the core 1s responsible for a reduction of the bending stiffness

factor .D* = % t(h + t)gEf which is obtained exactly when E; = O

and practically when E; is of the same order of magnitude as Er.

- Equation (129) shows that the reduction of D* is significant
whenever E; is so small that the ratio E,/Er 1s of the same order

of magnitude as the ratio (h + t)t/a2,
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As a numerical example take the following values: h = 0.9 inch,
t = 0,05 inch, & = 20 inches, and Ef/Ec = 1000, for which \

1 (b+t)t B 1 0.95X%0.05
L A ez X e 22 X 1000 = 0,0
27 a2 E, 2 500 09>

indicating a reduction in bending stiffness of about 6 percent.
Changing a from 20 inches to 10 inches changes the effect from

6 percent to 24 percent. Changing Ep/E; from 1000 to 2000 increases
the effect from 6 percent to 12 percent. Altogether it may be said
that this effect is of noticeable magnitude for some geometrically
reasonable structures when the modulus ratio Ef/E; 1s of the.

order 1000 or more. Assuming sluminum face layers with ZEf = 107 psi,
this means that Eg ® 10% psi, which is well within the range of some

pregent—day core—layer materials.

Comparing equation (129) with the earlier formulas for the effect .
of transverse shear stress deformation, for instance with equation (116)

in which a represents the plate radius and observing that G¢ & %-Ec,

it is seen that the correction terms are of the same form, the difference
being an appreciably larger numerical factor in the expression representing
the shear effect.

Closed circular ring acted upon by uniform radial load.— Having
rotational symmetry, d/d6 = O and v =B = 0. Also set p =m = 0.
The remaining equations permit the determination of the stresses in
the face and core layers in a way which depends on the extent to which
the load is applied to the outer (upper) and inner (lower) face membranes.
Equation (12) becomes '

N = aq ' (130)

From equations (121), it follows that

Oty = 8 —E[M/(h + t)a] (131)
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The stress—strain relations (122) to (124) give

w _ 1 o (b + t)a _ &g A _ (h+ t)C*¥]  aq
== C*Q' + -3->aq - “TEs - - C*[l + 3 _——Ecae = % (132)
and
= D* _8
M 1+ A akg (133)

A closed circular ring subjected to & uniform radial load
distribution q is stressed not only by a uniform axial force N = aq,
ag would be expected, but in addition is stressed by a uniform bending
moment M, the magnitude of which is given by equation (133). The
explanation of this result is that for a ring with relatively soft
core the circumferential stress distribution depends on the extent to
which the external radial load is applied to the inner and outer forces,
respectively. Roughly speaking, for a sufficiently flexible core layer
the load g, goes predominantly into the outer face layer, while the

load q; 8oes predominantly into the inner face layer.

According to equations (46), in the present case for the stresses
in the two face layers,

Nu=lN+—']’:—"M

(134)
M =2N-Ll-wm

According to equations (130) and (133) and in view of the definitions
of D* and A, this may be written

~

- & _2A8_

Ny = 2(% 1y k)
| \ [ | (135)

' =& - 2)8

o 2(? 1+ x)

>y
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Combining next equations (131) and (133), for the transverse

normal strese in the core layer, the following expression is obtained: .
5 v
of, = 136)
tm =14 . (13

For a specific example assume that the radial load is applied
entirely ﬁo the inner face of the ring so that g, = O and, according to

equation (125),

1= -2y
‘ : (137)

With q and s given by equations (137), equations (135) and (136)
becomse .

B 2a J1 + A
> (138)
_1fy _ b+ £\(1 +2Magg
Nl’E(l" 2a> T+ A ]
1 n .+ t) 941
tn = - 3 - Y . (139)

Tt is seen that the flexibility of the core layer increases the circumfer—

ential stress in the loaded face layer in the ratio (1 + 2))/(1 + A) and

decreages it in the unloaded face layer in the ratio 1/(1 + X), where A

ig defined by equation (119), compared with the equal values of these .
stresses when E, = «, :

Considering once more the numerical data under the section entitled
"Ring sector acted upon by end bending moments,” it is found, for
instance, that the stress in the inner face layer may be about 6 or 12,




NACA TN No. 1832 , L7

or 24 percent higher than the corresponding stress calculated without
taking into account the transverse flexibility of the core layer.

Ring sector acted upon by radial loads gq,; and qj, uniform in
circumferential direction and with vanishing resultant q.— Again it is
assumed that d( )/46 = 0, m = p = O and now in addition that q = O,
so that, according to equation (125), the only nonvanishing load

term is s. Further, it is assumed that the ends 6 = * o of the ring
sector are free of s%ress, that is, N(za) = Q(dw) = M(#) = 0. The
ordinary theory of circular rings would then indicate the absence of
deformations in the entire ring. In the present case there is found

a type of deformation peculiar to the sandwich ring, which may perhaps
be compared to the action of a Bourdon gage.

Solving first equations (120) and (121) and satisfying the end
conditions of the ring sector,

N=Q=M=0
(lhO)
Oty = 8
The stress—strain relations (122) to (124) are then
7
v +w=20
a + w' —v =0 > (141)

B! = —8/E;

-’

Assuming s 1independent of 6, from equation (141) there is obtained by
integration, with constants of integration Ay, Ay, and A3,

= — B
p=-fo+nm
v=-as 0+ Aja+ Ay cos 6+ A3 sin 6 (1k2)

w=oa ﬁL + Ap sin 6 — A3 cos 6
c
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As a specific example consider a complete ring, slitted radially
at the section 6 = x, so that a = x. Prescribe furthermore the
symmetry conditions B(0) = v(0) = w(0) = 0. Under these conditions
there is obtained from equation (142)

Ecs = —SQ
Ecv = —as(6 — sin 0) > ‘ . (143)
Eow = as(l — cos 6)

A

From equations (143), it follows that the radial slit, which is
of zero width before the loads q; and qj are applied, opens under

the action of the loads to a width given by

v(—x) — v(x) = 2na E_ = Ena(l + hzz % %2 (14%)
c

For a numerical example take & = 10 inches, h = 1 inch, t = 0,05 inch,
E, = 10,000 psi, and g, = 20 pei, and obtain

v(-n) — v(x) = 0.132 inch (145)

The foregoing three examples of ring analysis have been discussed
in some detail, because they illustrate relatively simply the effect of
transverse normal stress deformation in the theory of curved sandwich
structures, without involving at the same time the effect of transverse

shear stress deformation.

Bending of semicircular ring by end shear forces.— wa a problem is
considered in which both the values of E., and G, affect the result:

of the analysis. In the equilibrium equations (120) and (121) all
external load terms are set equal to zero and then, by 1ntegration and
from the boundary conditions, that is, from

N(ir. g) = M(i g) =0
)

(146)
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the following expressions for N, M, and Q are obtailned: “
Q@ =Q 8in 6
N = Qy cos 6 ' (147)
M= —-aQy cos @

The stress~strain relations (122) to (124) become

(1 + A/3)Qp cos 6 = (C*/a)(v' + w)
Q sin 6 = (h + t)GhI} + (Wt = v)/a] (148)

—(1 + A)Qoa cos 6 = (D*/a)p!?
Integration of the last of equations (148) gives
D*8 = —a2(1 + A)Qy sin 6 (149)

where a congtant of integration has been eliminated by means of the
symmetry condition B(0) = 0. Substituting equation (149) in the second
of equations (148),

2
1 a=(1l + A)
Qo sin 6[;h T +. D*+ ]

2 h + t)t E
Q sin 6%;[1 +%-(——§2——)—-@—§—+-G-§>] (150)

Simultaneous solution of equation (150) and the first of
equations (148) for v and w gives as general expressions for v
and w,

L(w' - v)

4
]

A8 cos 6 + Ay 8in 6 + Ay cos 6
(151)

=
]

AG gin 6 ~ (Al + B)cos 0 + A sin 6
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where A} and Ao eare arbitrary constants of integration and A
and B are found to be .

Qpe3 1 (b + t)t(Ep Ep ¥ X
A= SR A VAT o s (14 X
ox |m T2 T g2 \B, | G/ T mRox\ "

e (152)

_ Qa3 1+ t)tEe B\ px L2
B=opw |t +2 a2 \Be T 8) ~ alCc* 13

Ll

As further conditions, it is prescribed that v(0) = v(%) = 0, which

makes A, = A; = O in equation (151). There remains

A9 cos 8

<
i}

(153) ¢
AB gin 6 — B cos 6

]
1]

Of particular interest are the values of w(x/2) and w(0), the first
of these giving the radial deflection of the point of load application, ’
the second giving the change of radius at right angles to the applied
load. It is found that

3 (h + t)t/Ep E
T\ - Az o x S0 1+ B)b/Ee  Bp) DX A
w(z)_A2 " D*l}+2 = <E0+Gc>+a20*<l+3> (154)
o on__199%%, 1+ t)t(Ee Br)  px A
"“”-“B--@D*[“e R CAEIA

Equations (154) and (155) contain the interesting result that, for
this problem, transverse shear and transverse normal stress affect the
outcome formally in nearly the same way. If the generally unimportant
terms with D*/a2C* are omitted, which amounts to the usual assumption
of circumferential inextensibility of the ring, then the effects of
finite E, and G, occur in exactly the same way.
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For a numerical example take h ='0.,9 inch, t = 0,05 inch,
a = 20 inches, Ep/E; = 1000, and Eg/G, = 2000. This gives

a20x & g2 1770

A =L i
2" a2 B, 16.8

1(h+t)t B _ 2
2 Ge

a2 16.8

The factors in brackets in equations (154) and (155) become

1.18

1 o 1 1
1+ %8s 1w%s? 1770(1 T 3Ix 16.8)

and

1 2 _ .1 1
1+ %8* 158 1770(l HER 16.8> 1.18

Thus, in the present example the flexibility of the core is responsible

for an 18—percent increase of deflection—load ratio, and of this 12 percent
is due to transverse shearing and 6 percent to transverse normal stress.
Compared with these two effects the effect of circumferential extensibility
of the composite ring is seen to be negligible, As a further numerical
illustration, it is noted that reducing the ring radius a from 20 inches
to 10 inches, with all other data unchanged, changes the 18-percent
correction to a T2-percent correction.

Bending of complete circular ring under action of two concentrated
radial forces at 6 = Xx/2,— The solutlion of this problem may be obtalned
by superpositlon of the solutions for the semicircular ring under the
action of end shear forces Qp (equations (146) to (155)) eand under the

action of end loading moments My (equations (126) to (129)).
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The first step consists in determining My in terms of Qp such
that the sum of -the PB's from equations (129) and (149) assumes the
value zero for 6 = n/2, that is, the value of the superimposed bending
moment at 6 = x/2 mst meke the tangent to the deflected ring at
this point horizontal. Combining equations (129) and (149) in this
manner, there is obtained

1+ ) 1+ .2
P M- e =0

or
My = (2/x)aQg (156)

Tt may be noted that equation (156) is a further case of a statically
indeterminate problem where transverse shear and normal stress flexibility
do not affect the internal force and moment distribution but affect only
the state of deformation of the structure.

Further, the radial deflections w(x/2) and w(0) due to the -
action of My are calculated, in order to combine them with equations (152)
and (153). Integrating equations (129) and (127) with the boundary
conditions v(0) = v(n/2) = O, there is obtained for the displacements

due to My,

Dt = —(1 + x)Man(l — £ cos 9)
(157)
D¥v = (1 + M)Mga? (0 — £ sin 0)
and, in particular,
D*w(0) = (1 + x)MOaQ(EE - 1)
(158) )

—(1 + X)M’oa2

e 8)
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Combining equations (158) with equations (154) and (155) and taking My
from equation (156), there follows for the resultant displacements

-—

@) - E -0 - o Zxt 1]

> (159)
__ a3 fre 1 1[5, - D* A
w(0) = - X2 -1 +2) + g agc*(l + 3)
‘ J
3N .
where XG = iﬁ_iéflﬁ.ai has been put as a further abbreviation.
28 c :

Equations (159) may be written in the alternate form

w(x/2) = 0.149 9—%23{1 A+ 5.29[)@, + agz*(l + %)]} (160)

acC* 3

w(0) = —0.137 Qgi?’ 1+M+ 3.65[xG - .(1 + l)] (161)

When X = Ag = O and when the composite ring is assumed axially
inextensible, which amounts to putting D*/a2C* = 0 in equations (160)
and (161), then equations (160) and (161) reduce to well—known results
of circular-ring analysis.

Comparing equations (160) and (161) for the closed circular ring
with equations (154) and (155) for the open semicircular ring, it is
noteworthy that for the semicircular ring ) and Ag occur with equal

~ welght, while for the closed circular ring the influence of Aq 1is

considerably greater than the influence of A, Thus, for the closed
circular ring the effect of transverse shear deformation is much more
important than the effect of transverse normal stress deformation, while
for the open semicircular ring both effects occur in a mmch more nearly
equally important way.

For a numerical example of the use of equations (160) and (161)
take again the values for the numerical example given in the section
entitled "Bending of semicircular ring by end shear forces." This
glives for the expressions in braces
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1+ +

1 |, 2X5.29  5.29 _
16.8 6.8 1770 '.1’69

and

1 . 2 X 3.65 N 3.65

16.8 16.8 1770 1.50

1+

Thus, while the effect of transverse stress deformation for the open
circular ring amounted to 18 percent, the corresponding corrections
for the closed ring are 69 and 50 percent, respectively.

The next step in the analysis of sandwich—type circular rings
would be the general solution of the system of equations (120)
to (124) for arbitrary load distributions. This, evidently, is
possible and further specific examples of interest might be analyzed
on the basis of the general solution. Such extension of the work of
this section is, however, left for future considerations.

Circular Cylindrical Shells

In this section the general system of equations of part I of this
report is restricted to the equations of the theory of circular cylindrical
shells. The treatment of sandwich—type shells of this kind is shown to '
be not appreciably more difficult than the analysis without the effect
of transverse shear and normal stress.

As specific examples some problems of rotationally symmetric
deformations are treated. In particular the influence coefficients
are obtained for a semi—infinite shell acted upon by bending moments
and transverse forces at one end of the semi-infinite shell, With thene
influence coefficients an explicit solution is obtained for the problem
of the infinite circular cylindrical shell acted upon by a pressure
band of zero width.
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In the general equations of the problem there are set for the
relevant coordinates and variables,

t, = ab
Rp = o
Q =
Moo = My
B1 = Bg
mp = Dy

1
&£

g
=

n
=)
[

become
ONy 1 OlNxp ]
ox a 36 Px =0
Myp . 1 Mg _ %
e im0
?.Q_x_}.l%_.lyﬁ_;.q:O
- a do a )
My 1 Mg ]
> TaTse "t
}v
Myg 1 My _ _
dx a 36 W +mg =0
J

Ry =8
Nop = Ny
M =M
W =u
m =1y
P2 = Py

e (162)

o

The equilibrium differential equations (25) to (28), (31), and (34)

(163)

(164)
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o Y
Oty = 8 s a (165)

1

The stress—strain relatioms (56), (59), (60), (61), and (64) to (67)
%[(h + t)t/ae](Ef/EC) =,

become, with A = Ao =0, N

C*[%bl+g—+w]

My, - v
(1 * 3)N9 Ny Y] 108k,

Ny — Vg = c*(%%) < (166)

2(1 + V)lyg = c*(%;ﬁ +1 %g)

oy

Q = (b + t)Gc<Be + & g%—%)

q (167)

Q = (b + t)Gc<Bx + —gi)

(l+7\.)M9—-VMx= *(28_9—-"&:

- ¥ 2Bx |
My — Wy = D*(axx) r (168)

When G, = E; = o (and therewith A = 0) equations (163), (164),
(166), (167), and (168) reduce to the known system of equations in which
deformatione due to transverse stresses are neglected. The solution of
the present system of equatlons is not essentially more difficult than
the solution of the system with G; = Eg = o, In particular also hers

-
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there may be obtained a trigonometric double—series solution, as a
generalization of Navier's solution for the flat plate (references 7
and 8).

For this trigonometric double—series solution there is set,

q= Zqu sin m6 sin nx/1
Po =z 2 Pomn €08 MmO ein nx/1
px=z zpmsinma cos nx/1
mx=z me sin mb cos nx/Z.
m9=Z Zmexmcos_me 8in nx/1
s=ZZsmsinm9 sin nx/1

J

W =z 2 Wyn 8in mf sin nx/1
v = Z Z Vo cos mf sin nx/1
u = Z 2 Up, 8in mé cos nx/1 > (170)
2 2 Bxmm ©in mé ;:os nx/1

Z 2 Bomn cos mé sin nx/1

r (169)

Bx

Bo
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Q = ZE: jg: Qpn 8in mb cos nx/1
Q = zg: jg: Qomn cos mo sin nx/1
N, Ne) = Z Z (s Vo) sin m sin nx/1

Nyg = :E: :g: Nyomn €08 m6 cos nx/1

(N&: Me) =Z 2<Mjmn’ MGmn) sin mf sin nx/1

g = 22 'Mxemn cos m cos nx/1 J

When equations (169) to (171) are substituted in equations (163)
to (168) there remains for every value of m and n a system of
13 simultaneous equations for the 13 Fourier coefficients which occur

in equations (170) and (171).

¢ an

A gystem of only five simmltaneous equations for the five Fouriler
coefficients in equation (170) is obtained if first equations (163)
and (164) are reduced to five equations for the five unknowns w, v, u,
By, and By, by means of eguations (166) to (168).

For the present, the task is not carried out of obtaining the
deformation and internal stress Fourier coefficients of equations (170)
and (171) in terms of the Fourier coefficients of the load terms in
equation (169). Instead, the axisymmetrical case, to which
equations (169) to (171) reduce when sin mé and cos mé are
interchanged throughout, and then only the terms for m = 0 are taken,
is treated geparately.

Axisymmetrical deformation of circuler cylindrical shell.— In
equations (163) to (168) set

)/36 =0
3 )/x = ()
Nyo = Q = Moy = O - o (172)
v=2Bg =0
mg = pg = O




NACA TN No. 1832 ' _ .59

and then the following system of equations has to be dealt with:

Nx' + Py = 0
(173)
QX' - (Ng/&) + qQ = 0
M'—Q +my =0
(174)
oty =8 — My/(h + t)e
(1 + % 9 — VN, = c*[% + ____(?Q;E:)‘l]
(175)
NX - VNG = C¥t
Q = (h + t)G-c(Bx + ') | (176)
(1 + M\)Mg — VM, = D*g/aE,
(177)

Mg — VMg = DxB,

The system of equations (173) to (177) may be reduced to two
similtaneous equations for B, and Qy, a8 follows: First,

express M, in terms of By by means of equation (175) and substitute

the result in equation (174). From the first of equations (177), it
follows that ‘ .

-V —D¥*s | (178)
e 1.+)~1\&+(l+)»)a.EC
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and this, introduced into the second of equations (177), gives

Mx..ﬁl;tlﬂyf_ Bt + VD*g (179)

R R CP )

Equation (179) is introduced into the first of eguations (174) and,
restricting attention to shells of uniform section properties, there

is obtained

(1 _+ M)D* Bye'' — @y = —m, — YD*s (180)*

1+a-92 af,(1 + A - v2)

To obtain the second of these equations, first, introduce into
equation (176) the value of w' which follows from equation (175),

giving

% o [f) , 2 or(n + t)g"
Tene X7 F[@ et -t - St (8

In equation (181), Ng' and N,' are taken from equation (173) and,
after slight transformations, there is obtained

5 .
a2 L X . T - ﬁ( Y_PL)
C*é’ + 3)an s t)GC + By = o q' + = (182)*

Comparing equations (180) and (182) with the corresponding
equations without the effect of transverse shear and normal stress
deformation, it is seen that the effect of transverse normal stress,
which 1is represented by M\, merely somewhat modifies some of the
coefficients of the left sides of the corresponding system of equations
with E, =w. In contrast to this, the effect of finite G, 1is to

introduce a new term into the left sides of these equations. This new
term may be of appreciable importance, as will be shown.

Having solved equations (180) and (182), My and My are obtained
from equations (179) and (178), respectively; Ng follows from
equation (173) in the form

Ng = a(Qg' + q) (183)
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and w follows from equation {175) in the form

W= (a/C*)[kl + 1/3)aQ. ' + ag + vl/npx d%] (184)

The following examples illustrate the use of equations (178) to (184).

Infinlte circular cylindrical shell with periodic load distribution.—
In specialization of equations (169) to (171), set

q =g, 8in ux
8 =8, sin ux _
( | (185)
Px = Pyy CO8 ux
Ny = My, CO8 KX
’ >
-
o= W, 8in ux
u =1u, cos ux T (186)
Bx = Bxu cos ux
J
& = qu COB X
Ny = Ny, sin px
Ng = Ng, 8in px : (187)
My = My, 8in px
My = Meu sin ux
7
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By introducing equations (185) to (187) into equations (180)
and (182), two simultaneous equations are obtained for the ampli-—
tudes qu and Bxu’ as follows:

(L + A)D* o  yD* M8y
S By, + Qg = +
1= g2 "o T e T B YT T B
. > (188)
2 \ 2tEp 2 |
7 Bl e
hoox 3 82(h + t)G, ox\ /2
‘ ' J
To simplify the further discussion, by setting in equation (188)
Dyy = 8, = Pxpy = 0, there is obtained for BXM and qu
B, = 14+a—1° Iy X
X (1 + A)D* 3 :
4 (189)
=4
Qxl.l_uK -
J
The quantity K 1is given by
-1
2 E _ 2 b
K = [% ¥ % ¥ fi-—-—l—f-—a-ai fLrrove W ] (190)
7 (h + t)a= “"c (1 + X)nh (b + t)2a%I

where use has been made of the relation u = n/l. In equation (190)
the term X/3 will usually be of little importance. The other two
variable terms represent the effect of transgverse shear deformation
and of shell curvature, respectively. When the radius a is so large

that 1%/(h + t)282 << 1, the shell behaves under the action of the
'~ given load essentially as a plate strip. The effect of trangverse
shear is important as soon as the term (2/x2)(12/a2)(t/(h + t))(Ef/Gc)

is not small compared with 1.

Before evaluating a numerical example the following further
formulas which are readily obtained from equations (179), (183),
and (184) are listed:
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dp
= H K
MXM 2
Neu = aqH(l - K) A'> (191)

aaqu A
WU«= % E_—<l+'§>1{|

Equations (191) show that in this problem not only‘ls the deflection
increased because of the effect of transverse shear, and with that
the hoop stress resultant Neu, but now also an effect is found on

the bending-moment distribution Mx in the opposite sense. The effect
of transverse shear is to reduce the magnitude of the bending moments

in the shell., This result is in contrast to what was found for the
examples which were worked out in the sections on plate analysis and
circular ring analysis and is therefore of particular significance.

Equation (191) for W, may be compared with the corresponding

expression for a simply supported plate strip of width 1, with
sinusoidal load. The result for this case must follow from equation (191)
in the limit &>« and agree with equation (96), which was previously

- obtained. To compare the last of equations (191) with equation (96),
the last of equations (191) is written in the form

l+>\.—V2() l'+<1>2 1 4+ A _l(h+t)t_E__f_
(1 + 2)D* 1+2-v22 2 G
vy = X 5 = q, (192)
1.1+ = v 1\" C* (1> 2t _f
(1+X)D* ) 1 h+tG

%1++xx;ﬁi <l) >

Equation (192) reduces to the equivalent of equation (96) if in
it 8 — =,

From a comparison of equations (192) and (96), it is further
concluded that the correction due to transverse shear is greatest
in this case when a = ®, so that, in this case, the curvature of
the shell tends to reduce the addltional shear deformatlon below
the value obtained for the simply supported plate strip.
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For a numerical example first teke h = 1 inch, t = 0.05 inch,
a = 10 inches, 1 = 20 inches, Ef/Gc = 200, Ep/Ec = 100, v = 1/3,

and A = 11.05%0.0 lQO = 0,025, The factor K of equation (190)

2
becomes
-1
2 40O X 0.05 4(1 - 0.09) 160,000
K = 0.008 + = —— =22 % 100 5]
K E'*' * 2700 x 1.05 T 100 x 1.1

(1 + 0.008 + 3.86 + 5l+.5)"'1 = 0,01685

while without transverse shear and normal stress deformation

(K) gpeBpmee = (1 + 54,5)"1 = 0,0180

The correction in this case amounts to about 6 percent.

Changing the moduli ratio to Ep/Ge = 2000, Ef/Ec = 1000,

K=(1+ 0.08'+ 38.6 + 54.5) =0.0106

instead of K = 0,01685. The correctlon in this case amounts to

Q;QL%Q3§6%;QLQ§ X 100 s 70 percent. Thus again there is a case where

omigsion of the effect of transverse shear deformation would give
results which could not be used. However, it is noted that the effect
of trensverse normal stress deformation is quite small and may here

safely be neglected.

If the foregoing values of K are introduced into equations (191),
it is seen that the percentage corrections apply to the bend ing-moment
value directly but that for hoop tension and radial deflection the
corrections are very small indeed. In fact, in order that there be
appreciable corrections due to transverse shear on hoop tension and
radial deflection, it is necessary that the half wave length of the
ginusoidal load q be so small that K is at least of magnitude 0.25

or more.
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A case of approximately this kind is obtained if the half wave
length 1 1is changed from 20 inches to 10 inches and ths moduli ratios
are again taken as Eg/E; = 100, Er/Ge = 200. Then,

K = (1 + 0.008 + 0,965 + 3.41)"1 = 0.1865
whereas
(K) B eGgem = (1 + 3.41)71 = 0,227

The percentage change of K and therewith of M, 1is slightly more
than 19. The percentage change of Ny and w 1is about hl.

The foregoing numerical examples show that the effect of transverse
shear may be significant in cylindrical sandwich—shell analysis and that
moreover its magnitude will not in general be predictable by the analysis
of an equivalent flat-plate or straight—beam problem,

For the infinite circular cylindrical shell with
load g = g, cos ux the essential results are given by equations (190)

and (191). These results may be extended directly to the loading

condition
q = an COB uUnpX

(193)
by = nr/1
By superposition, from equation (191) the following formulas are
obtained:
N
My = ;{j @n/uﬂ?)Kh cos ppX
Ng = & jg: an (1 - Kn) CO8 ppX e (19%)
w = (a2/C¥) jg: qn[é — (1 + X/3)Kn] COS PpX
J
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The values of Kn are obtained from the formula

-1
A, 2 12t Ep o 4(1 4+ A — v2) 4
K, =1}(1+2 — . . 1
n [ ¥ 3 ¥ 22 (b + t)a2 G ¥ (1 + Mot (b + t)28° (195)

Having the solution for the infinite shell with periodic load
distribution, it will be only necessary to add to this the general
solution of the differential equations without external load terms,
in order to obtain the complete solution for any edge condition of
the axisymmetrically stressed circular cylindrical shell of finite length.
This additional solution will now be obtained.

Finite circular cylindrical shell acted upon by edge moments and
Porces.— To solve equations (180) and (182) with right—hand sides equal
to zero, equation (182) is differentiated twice and PBx'' is

substituted from equation (180). This gives

-gg A v ____ 1 t 1+ A — v2 _
C*<l ' 3>QX (h + £)Ge S e ®=0
or
& — 2mP0,t + bmgha = 0 (196)
where
= 4 “% cx - 1 £ Ei
m =g \/(I’+ x/3)(h + t)G & \/(l + X/3)(h ) Go (l97a)
1 )
m2=\l"]f+_0* 1+ L—V2 ) 1 L T+ V2 o
82D% (1 + M) (1 +1/3) @7 8)a V(1 + (1 +2/3)
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The suxiliary equation corresponding to equation (196) is

r - 2m°r2 + hmeh =0 (198a)

or

re = m12 £ mlh - hmeh (198b)

The solution of equation (196) occurs in two different forms, depending
on whether r2 of equation (198b) ig real or not. According to
equations (197) and (198b), r2 1is complex as long as

i L

my <hm2

or

r | (199e)

VAR S
g [(h + £)(1 + A/3)Ge (h + t)232(l + X/3)J

To clarify this condition, neglect A (which is of very little importance
‘here) and equation (199a) then becomes

Erc2a (199p)

When equation (199) holds, a quantity k may be defined by

k = \/le + 1 \/hmge - mli (200)

and the four roots of the characteristic equation are ¥k, k, -k,
and -k, where a bar indicates the teking of conjugates. The solution
of equation (196) may be written

i +'Eié_kx + Cpe™ o Eéekx

Qx = C1e (201)
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Where equation (199) does not hold, which is the case for very small
values of Gc/Ef only, all four roots of equation (198a) are real and of

the form

~
Ky = \lm12 + 3 /mlh - 1@22
kp = k7

| > (202)
k3 = \[ml2 - W
k) = —k3

and the solution of equation (196) can be taken in the form

ky.

] X —k k 3
Qx = Aje + Aee

—k
1x + Age * + Aje 3* (203)

Before applying either solution to a specific problem, there are
noted the following relations which follow from equation (200)

K& = |x]° - 2my?
(20k)

k + k = \fﬁ-\/mle + 2m22

Semi~—infinite shell acted upon by edge bending moment and shear
force.— There are the following boundary conditions, :
Me(0) = L———l———ll 2D et (0) = M
+ A=V

(205)

a4 (0) = Qo

while for x = » these same quantities vanish,1?

15For the same problem without the effect of transverse shear and
normsl stress, see reference 9.




NACA TN No. 1832 o 69

Of particular interest in this solution are the values of
deflection w(0) and change of slope B,(0) at the section where

the loads Mb and Qp are applied.16

Teking first the case Ep/Ge < 2a/t for which equation (201)
applies, 1t is seen that the conditions at infinity require that

Co =0Ch =0 (206)
so that

-kx - —kx
Qx = Cie = + Cye (207)

The values of B, may be obtained by integration from equation (180)
in the form

c =
(L+Mp* o _ 0 —x , Ol (208)
14+ r—v2 K2 =2

where two constants of integration have been discarded to satisfy again
the conditions at infinity. .

With equations (207) and (208) there is obtained from the boundary
conditions (equations {205)) that

Cy + €1 = Q

CIORICTOREE -

l6W1thout transverse shear and normal stress deformation these
relations are

_ Jr=v2 4| __LacD*

P =
—y2 b (1 —v?)ox

10 - oo - 0 ]

in agreement with equations (236) of reference 9, where the homogeneous
shell is considered.
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This determines C; and 61 in the form

)
¢, - X0+ || =g
k—k
> (210)
Ty = Qo + k%M
k¥ -k

-/

Equation (210) is introduced into equation (208) and there is
obtained as the first of two "influence coefficient" formulas

LMD g (0) - - —l-l;ll_é[% + (1 + D)ty (211)

1+ A —y2

The second of these formulas follows from equations (184), (207),
and (210) in the form

cx  w(0) _ 2 =
T e Hkl My + (k + k)QO] (212)

"Equations (211) and (212) may be written in more explicit form,
using equations (204) and (197). The results are

(1 +2/3)(1 + 2 —v2)
By(0) = - \’Ci*ﬁ 1+

+ \[\]hC* B S 55 Mo (213)

a2p* (1 + x_)(l +A/3)  (h+ t)(1 +2/3)

2o
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and

(1 +2/3)(1 + A =v?)

0 = - o T Mg
_ 82y . A ko 14—V (c*/a2Ge)
C*(l ! 3) \]&ED* (L + ML+ 2/3) (@ 6)(L+A73) % (214)

Neglecting the generally small effect of finite E; in

equations (213) and (214), that is, putting A = O in these equations,
there may be written instead

B.(0) = — E;il;:;!g Q + b Eﬂl_:;lflgf ___Jﬂ@L__.Ef (215)*
x JCxD* a2D* 2\/1 — 2 Gc

a _ V2 2 th(l - 2) t Ef N
w(O):———————:‘Ii-_*E_MO——g: ——l—\/1+—L (216)

Equations (215) and (216) contain the noteworthy fact that the
correction factors for the effect of transverse shear are independent
of the ratio t/h of face—layer thickness to core thickness., The
complete formulas of course must and do contain the influence of the
core thickness h,

Tt is further noted that, while equations (211) to (216) have been

derived for the case that mih < hmgh, for which the complex solution
holds, they are also valid, as is readily shown, when hmgh >.mlu.

Comparing -equations (213) and (214), and (215) and (216) with the
equations listed in footnote 16 it is seen that: (1) The effect of
transverse shear modifies the deflection due to QO and the rotation

due to M, but not the other two coefficients, (2) the effect of

transverse normal stress enters all four coefficients but only in a
minor way, and (3) the reciprocity relation that the deflection due
to My is the same as the rotation due to Qp is carried over from

the theory without the extra effects.
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For a numerical example the following data are chosen: t = 0.1 inch,
h = 1 inch, a = 10 inches, Ef/E; = 100, Ep/G; = 200, v = 1/3,

and A =2 £:1.X0.1 100 = 0,055, and, from equation (197),

2 100

- L 0,1 X200  _ o 406
T Io\/1.018 x 1.1 _ "

= 1-0,09 _ 0.294
" \llOO x 1,21 x 1,018 g

Then, according to equation (204),

x +X=\2 \0.18 + 0.173 = 0.84 -

]

while without transverse shear deformation (m 0) the value

of k + k = 0.59. According to equations (211) and (212), the effect
of transverse shear in this case is to Increase the rotation due to
the edge moment in the ratio 0.84/0.59 = 1.42, an effect of 42 percent.
The same increase is found for the deflection due to the edge shear
force. Rotation due to the shear force and deflection due to the
moments are practically unchanged. ILikewise, the effect of transverse
normal stress in this case is of negligible importance.

As a further numerical example there is chosen t = 0,05 inch,
h = 1 inch, a = 20 inches, Ef/E; = 1000, Er/Ge = 2000,

and 2 =1 140—5[%69:35- 1000 = 0.065, and, from equation (197),

: 1 0.05
= 2 2000 = 0,48
= 20\/1.022 x 1.05 3
a 1 41— 0.09 _
= \| T = 0.218

\1.05 x 20 | o )
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From equation (204) then

Ix|? = 0.095

k + % = \(2 \J0.23% + 0,095 = 0.8

while without transverse shear deformation (ml = O) the value

of k + k = 0.4k, Thus the effect in this case is to increase edge
rotation due to edge moment and edge deflection due to edge shear
force in the ratio 0.82/0.44 = 1.87, an effect of 87 percent.

Infinite circular cylindrical shell acted upon by transverse line
load .~ Calculation is restricted to the determination of deflection and
bending moment at the section x = O where the line load of intensity 2Qp
is assumed to act. The result of the foregoing paragraph masy be used as
followe., Consider the infinite shell cut in two parts at the section x = O
and assume & bending moment M, of such magnitude that the slope By (0)

is zero, According to equation (211), this gives

20 20 (217)

and therewith

| N . |
oxef0)  _ (k+%)2 - |K % - 2m® + 2m, % (218)

(1 +2/3)a2 k+ %k "2m12 + bm?

Equations (217) and (218) become, with equations (20%) and (197),

'\Ig\/ ox 1aa-v2 . _C¥ef 3
a2D* (1 + M) (1 + A/3)  (h + t)Gc 1 + A/3
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(l s X> 5 \V/ C* 1+ A =7 + C* /a 1
82D* (1 + M) (1 +2/3) (b + t)Ge 1 + r/3 (220)

w(0) = —

c*
\[ 1 4 A — V2 C* /a 1
2D* (L+ M@ +2/3)  (b+1t)G 1+ A/3

To give these formulas a somewhat less unwieldy appearance, the
effect of finite E;, that is, A = O, may again be neglected, as is

permissible in most cases; and there may be written

VI + t)a —9 (221) *

2{‘](1 — v2) \ll 1 Ef
Ql—v

w(0) = - M1 =1 2 V1 =2 (222) *
L Ep Bf
t h + t)a
\R ) 1+ 1 t .f

Some numerical examples are given as follows.

Teking t = 0,1 inch, & = 10 inches, Ep/Gc = 200, and v = 1/3,
transverse shear deformation reduces Mg to 1/V2.05 times the

value which holds when Gg = «, that 1s, there is about a 30 percent
reduction in My. At the same time the deflection under the line

lomd is 3.05/\2.05 = 2.14 times what it is when G¢ = «; that is,
there is an increase of about 115 percent in w(O0).
Teking t = 0.05 inch, a = 20 inches, and Ep/Ge = 200, My is
decreased by a factor \/h/5 = 0.89, while w(0) is increased by &

factor 1.5/\[1.25 = 1.3k.
Teking t = 0.05 inch, & = 20 inches, and Ep/G, = 2000, M, is

decreased by a factor l/\/3.62 = 0.526, while w(0) is increased by
a factor 6.25/\[3.62 = 3.29.




NACA TN No. 1832 ' (P

Equation (220) for w(O) may be compared with equation (116) for
the circular plate of radius a. This comparison shows that, while for
the plate both the ratios t/a and (h + t)/a enter into the correction
factor, the correction factor for the cylindrical shell contains the
ratio t/a only; that is, the corrections (but not the results) are
independent of the ratio of face—layer thickness to core thickness in
this case of a cylindrical shell. :

Spherical Shells

In conformity withrcustomary usage, the following notation is
introduced: '

£, = af £y = afd a =1

ap = sin ¢ Ry=Ry=a 11 = Ny

Moo = Ng Nip = Npy = Ngg § = o

% = Q My = My Mo = My o (223)
Mo = Mgg P1 = Py Po = Pg

o =ng m, = mg U = u

up =V B1 = Bg B2 =By |

Attention is here restricted to problems with rotational symmetry
and the following relations are used:

o( )P =0
(224)

Ngo = Q@ = Mg = pg =mg = v =By = 0

The differential equations of equilibrium (25) to (28), (31),
and (34) become, setting

o( )/o¢ =a( )/ag = ()
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(sin ¢N¢>' — cos Ny + sin ¢Q¢ +a sing p¢ =0
(sin ¢Q¢)' — sin ¢(N¢ + Ne> +asinfq=0
(sin ¢M¢)' — cos @My — a sin ¢Q¢ +a ging my = o

+(M¢+Me)/(h+t)a.—s=0

The stress—strain relations (56), (59) to (61), and (64)
become, if there is set in accordance with equation (63)

*1“2”12“5-—;5—%"“

o+ B (- Bre - o2 Mo )

A A N ucot¢+v h+t
ot (- oo 2zt

QY = (h + t)Gc(B¢ +w'a-u)
(1 + M)Mg — (v = MMy ='%*<a¢"+ f;)

(1 + MM — (v —X)W =%<B¢ cot ¢ +-Es-c;>

(225)
(226)
(227)

(228)

to (67)

(229)

(230)
(231)
(232)

(233)

O (234)
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There is first given a simple special solution of this system of
equations and then a generalization is obtained of the two simultaneous
equations for Q¢ and B¢ which are fundamental in the theory of

homogeneous isotropic shells.

Uniform stress distribution in a spherical shell.— Set in
equations (225) to (23%) Py = mg = 0 and assume that N¢, Ng, Q¢: M¢: :
and My are independent of ¢. From equation (225) it follows that: .

N¢=N9=No

(235)
Qf = 0
From equation (226) it follows then that
Ny = 3 ag (236)
and from equation (227) it follows that
| Mg =My = Mo (237)
Equation (228) gives
Oty = 8 — 2My/(h + t)a - (238)

In equations (230) and (231) set u = O for reasons of symmetry and
obtain

(1+%}V_V)No=gi‘.w+t_(£_t_t)_Ef

a Ca T, q (239)
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or, with Ny from equation (236) and A from equation (229),

(C*/a)w = 2(1 - ¥)ag (240)

Equation (232) is identically satisfied when Bg = 0. Equations (233)
and (234), in conjunction with equation (237), give

(14 2% = Vg = (0%/a) (s/8e) = & 22 £ 8)° ﬁ—i’ .

or

My = (h + t)ar s (2b41)

l+20—v

Then, from equation (238),

_(1-v)s (2k2)

(o] =
bm = T o0 = v
Equation (242) may be compared with equation (136) for the circular ring.
According to equation (46), there are obtained from equations (236)

and (241) the following expressions for the stress resultants in the
outer ("upper") and inner ("lower") face layers:

N
h+t _ (2 A8
(1 * e )Nﬁ - a<# * 1+ 2A-— v)
[ (243)
( - Lty =a(2_.___>.»i__) .
28 4H 1 +2xn -

Comparison of these results with the corresponding results for the
circular ring (equations (135)) shows that for given values of q
and s there is a greater difference between N, and N; 1in the
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spherical shell than there is in the circular ring, the reason being
the relatively larger influence of the s—term in equation (243),

For a specific example, it is again assumed that the radial load isg
applied entirely to the inner face so that gy = 0 and, according to

equations (20) and (22),

2
q = (? - 2§§EE> a3
' » r (24k)
- -3 -2Ya |

-

Substitution of equation (24k4) in equation (243) gives

28
« h 4ty _ _h+t ; 1 -—v
<1+2a>“ (l 2&) 1426 \
(245)
) No =(1-b+1t\811+4)—-v
i 28, Yy 1T +2h—v

As a numerical example, taking X\ = 0.0595, as in the example given in
the section entitled "Closed circular ring acted upon by uniform radial load;"
and V =1/3, it is found that the factor in N; which contains the effect
of the core flexibvility is (1 + 0.36)/(1 + 0,18) = 1.15. Thus, where
for the circular ring there was a 6-percent stress increase, there now
ig a 15-percent stress increase.

Reduction of axisymmetrical problem to two similtaneous equations
for Q¢ and Bgf— The fundamental results of reference 10 for
homogeneous shells may be readily extended to sandwich shells, as
follows: '

Equations (225) and (226) are used to express N¢ and Ny in
terms of Q¢.

Ny = cot fag + Fq(f) / (246)

Ng = Qg + Fo() (247)
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Tn equations (246) and (247) the functions F; and Fp are given by

F = ;:1%26 f(q .ces ¢ — pg sin ¢)ein g ag (248)
S P

Next the displacement components u and w are expressed in terms
of Q¢ by means of equations (230), (231), (246), and (247)-.

Subtraction of equation (231) from equation (230) gives

g(u' — cot {f u)

(1 + v)(N¢ - N9)

(1+ v)[—<Q¢' — cot ¢Q¢) +Fy - Fg] (250)
Equation (112) 'ig integrated to
(c*¥/a)u = —(1 + v)(Q¢ + F3) ‘ : | (251)

where F3 is given by

Fi = -gin ¢f Fl(¢) — F2(¢) ag - (252). '
sin ¢

Equations (251) and (252) are introduced into equation (231) and the
following expression is obtained for w:

(c*/a)w = (1 + )»/3)(001: ¢Q¢ + Q¢') + F), (253)
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where F) 1is given by
F), = - __i%-fl ﬁ% + (1 + v)cot ¢f F, +.<; + %)FQ -<§ —~%>F1 (254)

Equations (251) and (253) are introduced into equation (232) for Q¢
and the firast of the two simultaneous equations for Q¢ and B¢ is
obtained in the form

s Pt o) en

+ (1 + v)(Q¢ +IFiﬂ

which may be rearranged to readl’

1+ x/3 G (h + t)(1 + r/3)

%”+CW¢QW—[m@¢ YoA3 1 ]%

k/3 Bg = Fs(9) (255)

The function F5 1is given by

(1 + v)F3 + F

57 1 +1f3 (256)

Introducing the operator

L=() + cot @( ) - cot2¢( )

1Mhen A =0 and Gec = » and when no external loads are present,
thls equation checks with the first of equations (g) on page 469 of
reference 9,
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equation (255) may finally also be written

L - H]_)Q¢ + T%*m 3¢ = F5(¢) - (es7)*
where
' _ ot B o N _ 1 | 3
1 <h+th v+3>1+x/3 , (258)

The second of the two simultaneous equations is obtained somewhat
more directly as follows: Write equa.tions (233) and (234) in the form

Yo =TT vebj/gx(l + v)[(l +M)Bg’ + (v — Meot § By

+ (14 V)s/Ec] (259)

= DX /e, (1 + Mot By +(V — A)By'
K 1—v2+2x(1+v)[ * Moot f By + g

+ (1 + V)s/Ec] ‘ " (260)

Introduce equations (259) and (260) into the moment equllibrium
equation (228) and obtain

D*fa___ [3¢“ + cot § B¢ - (cot2¢ + >3¢ + (1 + V)S'/Ec

1—v2+2x(1+v)

+ (1 + V)s’/Ec] — aQ¢ + amg = 0 (261)
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Again, using the operator I, this may be written in the form

1+

(c ==y~ £l - 2 4 ox(a + ] g - 76(9) (262) %

The function Fg 1is given by

Fo = —(1 + VgL - &1 - ¥ + 221 + ]my (263)

Equation (262) may be compared with the second of equations (g)
on page 469 of reference 9.

Analysis of edge effect for spherical shell.— The special case of
no distributed surface load and no concentrated load at the apex of the
shell is obtained by setting

F5=F6=

Following again a known procedure from the theory without
transverse stress deformation, there may be set

Q¢ \l sin

e (264)
ﬁ¢ = __B.l__.._ .
\’ sin ¢ )
-
t Q' 1 Q
IR emes————— S — t
Q¢ ain E_CO ¢ \’sin ¢
> (265)
e Q! Q' 3 5 N\ 9
’ = —=— — cot § —=—— + (= cot®P + =)=
Y \,sin ¢ \ein ¢ <h 2> \lsin Y]

‘ . ”\

f‘.‘
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with corresponding formlas for B ! and B ', Introduction of
equation (264) into equations (257) and (262? gives

T 1_3, 2) _C* s -0
Q +(u:|_+2 hcot¢Ql+1+x/361 O_ .(26‘6)

>

't — <‘V ) _.% + i— cot2¢>Bl —_ %—i—[l - 'V2 +2xn(1 + V):I Qq =0 (267)
+ .

o

Attention is restricted to the cases for which F5 =Fg =0 1n
equations (266) and (267) and the problem ls considered of the shell
subject to edge loads (M¢)O, (Q¢)o, and Q‘I¢)O a‘g a section ¢ = @y,

Assuming that cot $y 1s not large compared with unityl® and that the
effect of the edge loads is restricted to a narrow edge zone so -

that |Q1| << |Q1"|, IBlj << |Bl"|, equations (266) and (267) may be
simplified to

~ C*
Qtt — HqQy + ——— B =0 268)*
1 11 1+ X/3 1 (
2
bt -1 LA+ e =0 (269) *

Equations (268) and (269) show that the influence of finite E(\ # O)
in the edge—effect problem consists, except in extreme circumstances,
in minor modifications of the results for E; = . The quantity T

which represents the influence of finite G, and which 1s

~ 2t
M1 =+t

Ql '_btrj

(270)

[ w

may, however, in practical cases be large compared with unity and not of
negligible influence on the results. ‘ _ .

18men cot ¢1 >> 1 the shell is termed a "shallow" shell which is
not coneidered in what follows.
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Equations (268) and (269) may be compared with equations (180)
. and (182) for the cylindrical shell. This comparison shows that the
. influence of finite Gc 1n the edge—effect problem is of the same
~nature for the spherical and cylindrical shells. Thus, results of the
same quantitative nature will be obtainable as in the section on
cylindrical shells under the headings entitled "Finite circular cylindrical
shell acted upon by edge moments and forces" and "Semi—infinite shell acted
upon by edge bending moment and shear force."

This work is not herein carried further to specific applications.
It is apparent that such applications may be worked out with hardly any
more difficulty than when the effect of the core deformability is not
taken into account.

CONCLUDING REMARKS

A system of basic equations has been derived for the analysis of
small-deflection problems of sandwich-type thin shells. This syatem of
equations reduces to Love's theory of thin shells when the transverse
shear and normsl stress deformability of the core of the gandwich is of
negligible importance. The system of basic equations has been applied
to a number of specific problems from the theory of plates, circular
rings, circular cylindrical shells, and spherical shells, and it has
been found that the effects of both transverse shear and transgverse
normal stress deformation may be of such magnitude that an analysis
which disregards them gives values for deflections and stresses which
are appreciably in error. .

Numerical calculations have been in the nature of sample calcu—
lations, illustrating both the use of the equations and the possible
effects of using them. Examples have been chosen from the point of
view of relative simplicity as well as with the thought to illustrate
most clearly the consequences of the extra deformations which have
been taken into account. It is unavoideble that, in so doing, some of
the examples may be of 1little interest for aircraft structural analysis
and that some problems may not have been analyzed which would have well
fitted within the contents of this report and which at the same time
woulld have been of considerable Practical importance.

The general analysis has been restricted by the following two
order—of-magnitude relations: (1) t/h << 1 and (2) tEp/hE, >> 1,

vhere t is the face~-layer thickness, h is the core—-layer thickness,
- ‘ Ef 1is the elastic modulus of the isotropic face—layer material,

and E, 1s the elastic modulus in the transverse direction of the

core—layer material. Therewith it is felt that very likely nearly

all situations have been covered in which the effect of transverse

core flexibility is of significant practical importance. It is

evident, however, that if desired the theory could be extended so as

i.........lllllIlIlIIIIIIlllIlllIl---L________________________;_____________~___Aﬁ o
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to include cases where one or both of these two order—of-magnitude
relations are not gatigfied. The main limitation of the present
analysis is the omission of ell finite—deflection and instability

effects. -

Messachusetts Institute of Technology
Cembridge, Mess., May 26, 1947
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11, showing coordinates and dimensions.

Figure 1.- Element of composite she
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Figure 2.- Element of composite shell, showing location and orientation of
stress resultants in face layers and core layer and orientation of external
loads.
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